scenario-non-kd-pre-ner-full-mdeberta_data-univner_full66
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1893
- Precision: 0.7961
- Recall: 0.8221
- F1: 0.8089
- Accuracy: 0.9796
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2637 | 0.2910 | 500 | 0.1727 | 0.3513 | 0.4626 | 0.3993 | 0.9402 |
0.1429 | 0.5821 | 1000 | 0.1196 | 0.5519 | 0.6317 | 0.5891 | 0.9595 |
0.0982 | 0.8731 | 1500 | 0.0984 | 0.6432 | 0.7123 | 0.6760 | 0.9683 |
0.0785 | 1.1641 | 2000 | 0.0942 | 0.6667 | 0.7540 | 0.7077 | 0.9714 |
0.0634 | 1.4552 | 2500 | 0.0891 | 0.7061 | 0.7742 | 0.7386 | 0.9742 |
0.06 | 1.7462 | 3000 | 0.0863 | 0.6970 | 0.8000 | 0.7450 | 0.9733 |
0.0512 | 2.0373 | 3500 | 0.0907 | 0.7341 | 0.7896 | 0.7609 | 0.9756 |
0.0392 | 2.3283 | 4000 | 0.0839 | 0.7433 | 0.7911 | 0.7664 | 0.9763 |
0.0404 | 2.6193 | 4500 | 0.0866 | 0.7350 | 0.8031 | 0.7675 | 0.9763 |
0.039 | 2.9104 | 5000 | 0.0827 | 0.7613 | 0.8020 | 0.7811 | 0.9778 |
0.0285 | 3.2014 | 5500 | 0.1001 | 0.7677 | 0.7990 | 0.7830 | 0.9775 |
0.0272 | 3.4924 | 6000 | 0.0858 | 0.7684 | 0.7969 | 0.7824 | 0.9777 |
0.0254 | 3.7835 | 6500 | 0.0910 | 0.7544 | 0.8149 | 0.7835 | 0.9773 |
0.0254 | 4.0745 | 7000 | 0.0960 | 0.7612 | 0.8002 | 0.7802 | 0.9772 |
0.0182 | 4.3655 | 7500 | 0.0952 | 0.7697 | 0.8136 | 0.7911 | 0.9785 |
0.0196 | 4.6566 | 8000 | 0.0969 | 0.7707 | 0.8134 | 0.7915 | 0.9786 |
0.0184 | 4.9476 | 8500 | 0.0959 | 0.7631 | 0.8108 | 0.7862 | 0.9777 |
0.0136 | 5.2386 | 9000 | 0.1043 | 0.7833 | 0.7989 | 0.791 | 0.9787 |
0.0136 | 5.5297 | 9500 | 0.1000 | 0.7802 | 0.8052 | 0.7925 | 0.9779 |
0.014 | 5.8207 | 10000 | 0.1104 | 0.7767 | 0.8110 | 0.7935 | 0.9782 |
0.0126 | 6.1118 | 10500 | 0.1211 | 0.7714 | 0.8033 | 0.7871 | 0.9775 |
0.0113 | 6.4028 | 11000 | 0.1146 | 0.7667 | 0.8133 | 0.7893 | 0.9781 |
0.0098 | 6.6938 | 11500 | 0.1120 | 0.7755 | 0.8149 | 0.7947 | 0.9782 |
0.0109 | 6.9849 | 12000 | 0.1159 | 0.7752 | 0.8195 | 0.7967 | 0.9781 |
0.0083 | 7.2759 | 12500 | 0.1293 | 0.7639 | 0.8159 | 0.7890 | 0.9775 |
0.0083 | 7.5669 | 13000 | 0.1216 | 0.7729 | 0.8120 | 0.7920 | 0.9783 |
0.0089 | 7.8580 | 13500 | 0.1233 | 0.7683 | 0.8230 | 0.7947 | 0.9786 |
0.0073 | 8.1490 | 14000 | 0.1185 | 0.7788 | 0.8168 | 0.7973 | 0.9781 |
0.0066 | 8.4400 | 14500 | 0.1334 | 0.7624 | 0.8162 | 0.7884 | 0.9773 |
0.0075 | 8.7311 | 15000 | 0.1249 | 0.7752 | 0.8049 | 0.7898 | 0.9781 |
0.007 | 9.0221 | 15500 | 0.1314 | 0.7998 | 0.7924 | 0.7961 | 0.9785 |
0.0056 | 9.3132 | 16000 | 0.1429 | 0.7654 | 0.8130 | 0.7885 | 0.9775 |
0.0053 | 9.6042 | 16500 | 0.1429 | 0.7632 | 0.8302 | 0.7953 | 0.9775 |
0.0052 | 9.8952 | 17000 | 0.1424 | 0.7768 | 0.8090 | 0.7926 | 0.9782 |
0.0045 | 10.1863 | 17500 | 0.1431 | 0.7853 | 0.8155 | 0.8001 | 0.9788 |
0.0044 | 10.4773 | 18000 | 0.1456 | 0.7754 | 0.8083 | 0.7915 | 0.9779 |
0.0043 | 10.7683 | 18500 | 0.1416 | 0.7814 | 0.8096 | 0.7952 | 0.9782 |
0.0044 | 11.0594 | 19000 | 0.1499 | 0.7976 | 0.7993 | 0.7984 | 0.9786 |
0.0035 | 11.3504 | 19500 | 0.1441 | 0.7788 | 0.8121 | 0.7951 | 0.9786 |
0.0034 | 11.6414 | 20000 | 0.1475 | 0.7713 | 0.8205 | 0.7952 | 0.9783 |
0.004 | 11.9325 | 20500 | 0.1401 | 0.7885 | 0.8080 | 0.7981 | 0.9788 |
0.003 | 12.2235 | 21000 | 0.1568 | 0.7857 | 0.8166 | 0.8008 | 0.9787 |
0.0034 | 12.5146 | 21500 | 0.1557 | 0.7850 | 0.8107 | 0.7976 | 0.9784 |
0.0032 | 12.8056 | 22000 | 0.1522 | 0.7610 | 0.8253 | 0.7919 | 0.9772 |
0.0032 | 13.0966 | 22500 | 0.1601 | 0.7808 | 0.8049 | 0.7927 | 0.9781 |
0.0023 | 13.3877 | 23000 | 0.1562 | 0.7837 | 0.8062 | 0.7948 | 0.9781 |
0.003 | 13.6787 | 23500 | 0.1438 | 0.7863 | 0.8010 | 0.7936 | 0.9783 |
0.0028 | 13.9697 | 24000 | 0.1469 | 0.7820 | 0.8065 | 0.7941 | 0.9786 |
0.0021 | 14.2608 | 24500 | 0.1589 | 0.7920 | 0.7973 | 0.7947 | 0.9786 |
0.0022 | 14.5518 | 25000 | 0.1666 | 0.7892 | 0.8025 | 0.7958 | 0.9786 |
0.0025 | 14.8428 | 25500 | 0.1550 | 0.7683 | 0.8088 | 0.7880 | 0.9779 |
0.0023 | 15.1339 | 26000 | 0.1614 | 0.7809 | 0.8198 | 0.7999 | 0.9788 |
0.002 | 15.4249 | 26500 | 0.1600 | 0.7810 | 0.8142 | 0.7973 | 0.9787 |
0.0018 | 15.7159 | 27000 | 0.1589 | 0.7934 | 0.8098 | 0.8015 | 0.9790 |
0.0021 | 16.0070 | 27500 | 0.1636 | 0.7903 | 0.8195 | 0.8046 | 0.9791 |
0.0017 | 16.2980 | 28000 | 0.1646 | 0.7807 | 0.8218 | 0.8007 | 0.9787 |
0.0015 | 16.5891 | 28500 | 0.1750 | 0.7873 | 0.8116 | 0.7992 | 0.9784 |
0.0022 | 16.8801 | 29000 | 0.1603 | 0.79 | 0.8093 | 0.7995 | 0.9787 |
0.0015 | 17.1711 | 29500 | 0.1709 | 0.7806 | 0.8065 | 0.7934 | 0.9782 |
0.0017 | 17.4622 | 30000 | 0.1645 | 0.7869 | 0.8207 | 0.8034 | 0.9788 |
0.0015 | 17.7532 | 30500 | 0.1618 | 0.7752 | 0.8202 | 0.7971 | 0.9781 |
0.0017 | 18.0442 | 31000 | 0.1707 | 0.7772 | 0.8220 | 0.7990 | 0.9781 |
0.0015 | 18.3353 | 31500 | 0.1676 | 0.7843 | 0.8176 | 0.8006 | 0.9786 |
0.0015 | 18.6263 | 32000 | 0.1685 | 0.7907 | 0.8152 | 0.8027 | 0.9790 |
0.0014 | 18.9173 | 32500 | 0.1630 | 0.7881 | 0.8116 | 0.7997 | 0.9788 |
0.0011 | 19.2084 | 33000 | 0.1701 | 0.7924 | 0.8155 | 0.8038 | 0.9791 |
0.0013 | 19.4994 | 33500 | 0.1591 | 0.7863 | 0.8179 | 0.8018 | 0.9789 |
0.0014 | 19.7905 | 34000 | 0.1647 | 0.7873 | 0.8184 | 0.8025 | 0.9789 |
0.0011 | 20.0815 | 34500 | 0.1670 | 0.7878 | 0.8087 | 0.7981 | 0.9791 |
0.0009 | 20.3725 | 35000 | 0.1665 | 0.7847 | 0.8087 | 0.7965 | 0.9791 |
0.0013 | 20.6636 | 35500 | 0.1648 | 0.7923 | 0.8149 | 0.8034 | 0.9791 |
0.0009 | 20.9546 | 36000 | 0.1705 | 0.7898 | 0.8201 | 0.8046 | 0.9788 |
0.0009 | 21.2456 | 36500 | 0.1710 | 0.7871 | 0.8195 | 0.8030 | 0.9790 |
0.0008 | 21.5367 | 37000 | 0.1744 | 0.7929 | 0.8181 | 0.8053 | 0.9792 |
0.0008 | 21.8277 | 37500 | 0.1795 | 0.7995 | 0.8098 | 0.8046 | 0.9793 |
0.0009 | 22.1187 | 38000 | 0.1796 | 0.7954 | 0.8117 | 0.8035 | 0.9792 |
0.0009 | 22.4098 | 38500 | 0.1772 | 0.7949 | 0.8136 | 0.8041 | 0.9790 |
0.0007 | 22.7008 | 39000 | 0.1853 | 0.7914 | 0.8191 | 0.8050 | 0.9788 |
0.0008 | 22.9919 | 39500 | 0.1785 | 0.7963 | 0.8169 | 0.8065 | 0.9791 |
0.0008 | 23.2829 | 40000 | 0.1777 | 0.7924 | 0.8133 | 0.8027 | 0.9789 |
0.0008 | 23.5739 | 40500 | 0.1788 | 0.7880 | 0.8140 | 0.8008 | 0.9786 |
0.0006 | 23.8650 | 41000 | 0.1770 | 0.7943 | 0.8175 | 0.8057 | 0.9793 |
0.0006 | 24.1560 | 41500 | 0.1753 | 0.8012 | 0.8176 | 0.8093 | 0.9795 |
0.0006 | 24.4470 | 42000 | 0.1776 | 0.8008 | 0.8159 | 0.8083 | 0.9795 |
0.0007 | 24.7381 | 42500 | 0.1774 | 0.7967 | 0.8143 | 0.8054 | 0.9793 |
0.0005 | 25.0291 | 43000 | 0.1806 | 0.7900 | 0.8195 | 0.8045 | 0.9790 |
0.0005 | 25.3201 | 43500 | 0.1841 | 0.7934 | 0.8175 | 0.8053 | 0.9793 |
0.0006 | 25.6112 | 44000 | 0.1804 | 0.8104 | 0.8110 | 0.8107 | 0.9798 |
0.0008 | 25.9022 | 44500 | 0.1790 | 0.7972 | 0.8198 | 0.8084 | 0.9797 |
0.0004 | 26.1932 | 45000 | 0.1832 | 0.7942 | 0.8244 | 0.8090 | 0.9795 |
0.0004 | 26.4843 | 45500 | 0.1818 | 0.8053 | 0.8146 | 0.8099 | 0.9796 |
0.0006 | 26.7753 | 46000 | 0.1833 | 0.8058 | 0.8178 | 0.8117 | 0.9800 |
0.0004 | 27.0664 | 46500 | 0.1866 | 0.8044 | 0.8182 | 0.8112 | 0.9798 |
0.0003 | 27.3574 | 47000 | 0.1863 | 0.8003 | 0.8240 | 0.8120 | 0.9799 |
0.0003 | 27.6484 | 47500 | 0.1892 | 0.7952 | 0.8279 | 0.8112 | 0.9796 |
0.0003 | 27.9395 | 48000 | 0.1891 | 0.7969 | 0.8274 | 0.8119 | 0.9797 |
0.0003 | 28.2305 | 48500 | 0.1895 | 0.7999 | 0.8209 | 0.8103 | 0.9797 |
0.0002 | 28.5215 | 49000 | 0.1902 | 0.8015 | 0.8173 | 0.8093 | 0.9796 |
0.0004 | 28.8126 | 49500 | 0.1893 | 0.7995 | 0.8220 | 0.8106 | 0.9797 |
0.0004 | 29.1036 | 50000 | 0.1901 | 0.7985 | 0.8211 | 0.8096 | 0.9795 |
0.0005 | 29.3946 | 50500 | 0.1885 | 0.7979 | 0.8207 | 0.8091 | 0.9796 |
0.0002 | 29.6857 | 51000 | 0.1889 | 0.7969 | 0.8221 | 0.8093 | 0.9796 |
0.0002 | 29.9767 | 51500 | 0.1893 | 0.7961 | 0.8221 | 0.8089 | 0.9796 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for haryoaw/scenario-non-kd-pre-ner-full-mdeberta_data-univner_full66
Base model
microsoft/mdeberta-v3-base