hassaanik commited on
Commit
4880605
·
verified ·
1 Parent(s): ceff7b4

Upload 6 files

Browse files
Files changed (6) hide show
  1. .env +1 -0
  2. chains.py +60 -0
  3. main.py +50 -0
  4. portfolio.py +21 -0
  5. requirements.txt +9 -0
  6. utils.py +16 -0
.env ADDED
@@ -0,0 +1 @@
 
 
1
+ GROQ_API_KEY= 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
chains.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from langchain_groq import ChatGroq
3
+ from langchain_core.prompts import PromptTemplate
4
+ from langchain_core.output_parsers import JsonOutputParser
5
+ from langchain_core.exceptions import OutputParserException
6
+ from dotenv import load_dotenv
7
+
8
+ load_dotenv()
9
+
10
+ class Chain:
11
+ def __init__(self):
12
+ self.llm = ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama-3.1-70b-versatile", max_tokens=512)
13
+
14
+ def extract_jobs(self, cleaned_text):
15
+ prompt_extract = PromptTemplate.from_template(
16
+ """
17
+ ### SCRAPED TEXT FROM WEBSITE:
18
+ {page_data}
19
+ ### INSTRUCTION:
20
+ The scraped text is from the career's page of a website.
21
+ Your job is to extract the job postings and return them in JSON format containing the following keys: `role`, `experience`, `skills` and `description`.
22
+ Only return the valid JSON.
23
+ ### VALID JSON (NO PREAMBLE):
24
+ """
25
+ )
26
+ chain_extract = prompt_extract | self.llm
27
+ res = chain_extract.invoke(input={"page_data": cleaned_text})
28
+ try:
29
+ json_parser = JsonOutputParser()
30
+ res = json_parser.parse(res.content)
31
+ except OutputParserException:
32
+ raise OutputParserException("Context too big. Unable to parse jobs.")
33
+ return res if isinstance(res, list) else [res]
34
+
35
+ def write_mail(self, job, links):
36
+ prompt_email = PromptTemplate.from_template(
37
+ """
38
+ ### JOB DESCRIPTION:
39
+ {job_description}
40
+
41
+ ### INSTRUCTION:
42
+ You are Hassaan, a business development executive at EziLine. EziLine is an AI & Software Consulting company dedicated to facilitating
43
+ the seamless integration of business processes through automated tools.
44
+ Over our experience, we have empowered numerous enterprises with tailored solutions, fostering scalability,
45
+ process optimization, cost reduction, and heightened overall efficiency.
46
+ Your job is to write a cold email to the client regarding the job mentioned above describing the capability of EziLine
47
+ in fulfilling their needs.
48
+ Also add the most relevant ones from the following links to showcase EziLine's portfolio: {link_list}
49
+ Remember you are Hassaan, BDE at Eziline.
50
+ Do not provide a preamble.
51
+ ### EMAIL (NO PREAMBLE):
52
+
53
+ """
54
+ )
55
+ chain_email = prompt_email | self.llm
56
+ res = chain_email.invoke({"job_description": str(job), "link_list": links})
57
+ return res.content
58
+
59
+ if __name__ == "__main__":
60
+ print(os.getenv("GROQ_API_KEY"))
main.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify, render_template
2
+ from chains import Chain
3
+ from portfolio import Portfolio
4
+ from utils import clean_text
5
+ from langchain_community.document_loaders import WebBaseLoader
6
+
7
+
8
+ app = Flask(__name__)
9
+
10
+ chain = Chain()
11
+ portfolio = Portfolio()
12
+
13
+ @app.route('/')
14
+ def index():
15
+ return render_template('index.html')
16
+
17
+ @app.route('/generate-email', methods=['POST'])
18
+ def generate_email():
19
+ url = request.form.get('url')
20
+ if not url:
21
+ return jsonify({"error": "URL is required"}), 400
22
+
23
+ try:
24
+ # Load the webpage content
25
+ loader = WebBaseLoader([url])
26
+ data = clean_text(loader.load().pop().page_content)
27
+
28
+ # Load the portfolio into the vector database
29
+ portfolio.load_portfolio()
30
+
31
+ # Extract jobs from the cleaned text (use the first job found)
32
+ jobs = chain.extract_jobs(data)
33
+ if not jobs:
34
+ return jsonify({"error": "No jobs found on the provided URL"}), 404
35
+
36
+ # Generate a single email for the first job
37
+ job = jobs[0] # Take the first job if multiple are found
38
+ skills = job.get('skills', [])
39
+ links = portfolio.query_links(skills)
40
+ if not links:
41
+ links = "No relevant portfolio links found."
42
+ email = chain.write_mail(job, links)
43
+
44
+ return jsonify({"email": email})
45
+
46
+ except Exception as e:
47
+ return jsonify({"error": str(e)}), 500
48
+
49
+ if __name__ == '__main__':
50
+ app.run(debug=True)
portfolio.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import chromadb
3
+ import uuid
4
+
5
+
6
+ class Portfolio:
7
+ def __init__(self, file_path="Resource\\my_portfolio.csv"):
8
+ self.file_path = file_path
9
+ self.data = pd.read_csv(file_path)
10
+ self.chroma_client = chromadb.PersistentClient('vectorstore')
11
+ self.collection = self.chroma_client.get_or_create_collection(name="portfolio")
12
+
13
+ def load_portfolio(self):
14
+ if not self.collection.count():
15
+ for _, row in self.data.iterrows():
16
+ self.collection.add(documents=row["Techstack"],
17
+ metadatas={"links": row["Links"]},
18
+ ids=[str(uuid.uuid4())])
19
+
20
+ def query_links(self, skills):
21
+ return self.collection.query(query_texts=skills, n_results=2).get('metadatas', [])
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ langchain==0.2.14
2
+ langchain-community==0.2.12
3
+ langchain-groq===0.1.9
4
+ unstructured==0.14.6
5
+ selenium==4.21.0
6
+ chromadb==0.5.0
7
+ streamlit==1.35.0
8
+ pandas==2.0.2
9
+ python-dotenv==1.0.0
utils.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ def clean_text(text):
4
+ # Remove HTML tags
5
+ text = re.sub(r'<[^>]*?>', '', text)
6
+ # Remove URLs
7
+ text = re.sub(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', text)
8
+ # Remove special characters
9
+ text = re.sub(r'[^a-zA-Z0-9 ]', '', text)
10
+ # Replace multiple spaces with a single space
11
+ text = re.sub(r'\s{2,}', ' ', text)
12
+ # Trim leading and trailing whitespace
13
+ text = text.strip()
14
+ # Remove extra whitespace
15
+ text = ' '.join(text.split())
16
+ return text