File size: 3,674 Bytes
eecd883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.nn.functional as F
import torch.nn as nn

class Base(nn.Module):
    def training_step(self, batch):
        images, labels = batch
        out = self(images)                # Generate predictions
        loss = F.cross_entropy(out, labels) # Calculate loss
        return loss

    def validation_step(self, batch):
        images, labels = batch
        out = self(images)                    # Generate predictions
        loss = F.cross_entropy(out, labels)   # Calculate loss
        acc = accuracy(out, labels)           # Calculate accuracy
        return {'val_loss': loss.detach(), 'val_acc': acc}

    def validation_epoch_end(self, outputs):
        batch_losses = [x['val_loss'] for x in outputs]
        epoch_loss = torch.stack(batch_losses).mean()   # Combine losses
        batch_accs = [x['val_acc'] for x in outputs]
        epoch_acc = torch.stack(batch_accs).mean()      # Combine accuracies
        return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}

    def epoch_end(self, epoch, result):
        print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(
            epoch, result['train_loss'], result['val_loss'], result['val_acc']))

        # print(f'Epoch: {epoch} | Train_loss: {result['train_loss']} | Val_loss:{result['val_loss']} | Val_acc: {result['val_acc']}')

def accuracy(outputs, labels):
    _, preds = torch.max(outputs, dim=1)
    return torch.tensor(torch.sum(preds == labels).item() / len(preds))


class PotatoDiseaseDetectionModel(Base):
    def __init__(self, in_channels=3, num_classes=3):
        super(PotatoDiseaseDetectionModel, self).__init__()

        # Define the network layers
        self.network = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2),

            nn.Flatten()
        )

        # Define the classifier layers
        self.classifier = nn.Sequential(
            nn.Linear(in_features=256*28*28, out_features=128),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(in_features=128, out_features=num_classes)
        )

    def forward(self, x):
        # Pass the input through the network
        x = self.network(x)

        # Pass the output through the classifier
        x = self.classifier(x)

        return x

# Create the model with desired number of classes
potato_model = PotatoDiseaseDetectionModel(num_classes=3)
tomato_model = PotatoDiseaseDetectionModel(num_classes=3)