File size: 2,328 Bytes
3510eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6340
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9747 | 1.0 | 112 | 1.7879 | 0.56 |
| 1.322 | 1.99 | 224 | 1.2554 | 0.67 |
| 1.0047 | 3.0 | 337 | 0.9381 | 0.73 |
| 0.8037 | 4.0 | 449 | 0.8347 | 0.77 |
| 0.5617 | 4.99 | 561 | 0.7889 | 0.76 |
| 0.4773 | 6.0 | 674 | 0.6480 | 0.84 |
| 0.2749 | 6.99 | 786 | 0.6533 | 0.79 |
| 0.1649 | 8.0 | 899 | 0.6974 | 0.79 |
| 0.1132 | 9.0 | 1011 | 0.6771 | 0.81 |
| 0.1243 | 9.97 | 1120 | 0.6340 | 0.83 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 2.13.1
- Tokenizers 0.13.3
|