--- datasets: - Anthropic/hh-rlhf language: - en metrics: - accuracy --- - base model: [PY007/TinyLlama-1.1B-intermediate-step-480k-1T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T) - helpful accuracy: 68.37 - harmless accuracy: 69.71 - total accuracy: 68.74 - 1011-hh-rlhf-1.1b-128-1e-5-epoch-1 (1024 sequence length) usage: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("heegyu/1011-hh-rlhf-1.1b-128-1e-5-epoch-1") model = AutoModelForSequenceClassification.from_pretrained("heegyu/1011-hh-rlhf-1.1b-128-1e-5-epoch-1") text = """Human: Hi, how are you today? Assistant: It's so nice!""" inputs = tokenizer(text, return_tensors="pt") print(model(**inputs).logits) # tensor([[0.4552]]) text = """Human: Hi, how are you today? Assistant: It's so nice! Human: Really? I'm not so good today Assistant: Haha!! That's too bad!""" inputs = tokenizer(text, return_tensors="pt") print(model(**inputs).logits) # tensor([[0.0179]]) ```