Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.18 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3f70d7cbf9de4af5243bb5370746824b6d1dcaa5a96d1850495a9071f2473e5
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b1b680dc700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b1b680caf80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691838648233642336,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARszfvcPm5T5ZSVe+bxeIPj5WpTp6c98+RszfvcPm5T5ZSVe+8P9sPvmJTj83SqG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArzxivzX3pj9n+Yq/aR2Lvx5elL/1fKk/td8BvwoDpT+EWKO/klanPvQiDj/czpu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGzN+9w+blPllJV76FTOq/7JDTP0/6s79vF4g+PlalOnpz3z5uoe4+cy62ugSfxT5GzN+9w+blPllJV76FTOq/7JDTP0/6s7/w/2w++YlOPzdKob/ndII+SLnePu4ysL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.10927634 0.4490262 -0.21024074]\n [ 0.26580378 0.00126142 0.4364279 ]\n [-0.10927634 0.4490262 -0.21024074]\n [ 0.23144507 0.8067928 -1.2600774 ]]",
|
34 |
+
"desired_goal": "[[-0.88373846 1.3044192 -1.0857362 ]\n [-1.086835 -1.1591222 1.3241259 ]\n [-0.50731975 1.2891552 -1.2761388 ]\n [ 0.32683235 0.55522084 -1.2172503 ]]",
|
35 |
+
"observation": "[[-1.0927634e-01 4.4902620e-01 -2.1024074e-01 -1.8304602e+00\n 1.6528602e+00 -1.4060763e+00]\n [ 2.6580378e-01 1.2614203e-03 4.3642789e-01 4.6607536e-01\n -1.3899341e-03 3.8597882e-01]\n [-1.0927634e-01 4.4902620e-01 -2.1024074e-01 -1.8304602e+00\n 1.6528602e+00 -1.4060763e+00]\n [ 2.3144507e-01 8.0679280e-01 -1.2600774e+00 2.5479814e-01\n 4.3500733e-01 -1.3765543e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACOmQveMAIL0R8HI+pwmkPQYXAz6t7VA+kJdHPZs3Fz6UZQc+z3ZTvafUND0MwMI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.07075697 -0.03906335 0.2372439 ]\n [ 0.08009654 0.12801751 0.20403166]\n [ 0.04872853 0.14767306 0.13222343]\n [-0.05162698 0.04414811 0.09509286]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8SakRBeHBWMAWyUSwKMAXSUR0ClLKjawljWdX2UKGgGR7+OAEt/WlMzaAdLAWgIR0ClLK1psXSCdX2UKGgGR7/XOhTOxB3SaAdLBGgIR0ClLHHwPRRedX2UKGgGR7/N/WDpTuOTaAdLA2gIR0ClLO+0w8GLdX2UKGgGR7/RMY/FBIFvaAdLA2gIR0ClLDsLfDUFdX2UKGgGR7+vgccU/OdHaAdLAmgIR0ClLPqKgqVhdX2UKGgGR7/MSjgydnTRaAdLA2gIR0ClLL0TcqOMdX2UKGgGR7/QlF+d9UjtaAdLA2gIR0ClLIGrCFbndX2UKGgGR7/AGorFwT/RaAdLAmgIR0ClLEbQswtbdX2UKGgGR7/EIoE0SAYpaAdLAmgIR0ClLQTYmLLqdX2UKGgGR7+3piZv1lGxaAdLAmgIR0ClLMeL3sX0dX2UKGgGR7/Tq2BreqJeaAdLBGgIR0ClLJVinYQKdX2UKGgGR7/UbVz6rNnoaAdLBGgIR0ClLFq7iADrdX2UKGgGR7/Souf29L6DaAdLA2gIR0ClLRY/3WWhdX2UKGgGR7/JZjhDPWxyaAdLA2gIR0ClLNizLOiWdX2UKGgGR7/IQNCqp97XaAdLA2gIR0ClLGtz0Yj0dX2UKGgGR7/bT6zmfXf7aAdLBGgIR0ClLKtu1ndwdX2UKGgGR7/XSvTw2ETQaAdLBGgIR0ClLSmig00ndX2UKGgGR7/X5UtI065oaAdLBGgIR0ClLOxptaZAdX2UKGgGR7/EzLwF1SwXaAdLAmgIR0ClLLgEdNnHdX2UKGgGR7/TVWCEpRXPaAdLA2gIR0ClLH0h/y5JdX2UKGgGR7+zVJ+UhV2iaAdLAmgIR0ClLTYiX6ZZdX2UKGgGR7/M/cFhXr+paAdLA2gIR0ClLPzr3TNMdX2UKGgGR7/GR+SbH6uXaAdLA2gIR0ClLIrcCYCydX2UKGgGR7/RrJbMX7+DaAdLA2gIR0ClLUO7pV0cdX2UKGgGR7/Y9TP0I1LraAdLBGgIR0ClLMqbjLjhdX2UKGgGR7/SQvpQk5ZKaAdLBGgIR0ClLREz41xbdX2UKGgGR7/MFTNt65XmaAdLA2gIR0ClLJsCLdeqdX2UKGgGR7/RneizsyBTaAdLA2gIR0ClLVQ1JlJ6dX2UKGgGR7/JK2a2F36iaAdLA2gIR0ClLNsJIDoydX2UKGgGR7/D1anrIHTraAdLAmgIR0ClLKUPpY9xdX2UKGgGR7++Pgeii7CjaAdLAmgIR0ClLV49X9zfdX2UKGgGR7/KH6/IsAeaaAdLA2gIR0ClLSEwN9YwdX2UKGgGR7/G2vStvGZNaAdLA2gIR0ClLO15jYqYdX2UKGgGR7+7ikwevIOpaAdLAmgIR0ClLWvTw2ETdX2UKGgGR7+5vOyE+PilaAdLAmgIR0ClLS6shgVodX2UKGgGR7/LZwGW2PT5aAdLA2gIR0ClLLigK4QSdX2UKGgGR7+iEHt4RmK7aAdLAWgIR0ClLTQ4S6DodX2UKGgGR7+ga99MK1G9aAdLAWgIR0ClLL3t0FKTdX2UKGgGR7+3dHlOoHcDaAdLAmgIR0ClLXcVpKzzdX2UKGgGR7/SQmNR3u/laAdLA2gIR0ClLP318LKFdX2UKGgGR7+6e7L+xW1daAdLAmgIR0ClLMc8DB/JdX2UKGgGR7/NmnO0LMLXaAdLA2gIR0ClLUTx5LRKdX2UKGgGR7+9N+LFXJYDaAdLAmgIR0ClLQlkxyn2dX2UKGgGR7/QXS0BwMpgaAdLA2gIR0ClLYewC8vmdX2UKGgGR7+2IacZtNzsaAdLAmgIR0ClLNNjslcAdX2UKGgGR7+ejEehf0EpaAdLAWgIR0ClLYxk3CKrdX2UKGgGR7/ArMC9ytFKaAdLAmgIR0ClLRMtTUAldX2UKGgGR7+RvWH1vl2eaAdLAWgIR0ClLZEmx+rmdX2UKGgGR7/OgNgBtDUmaAdLA2gIR0ClLVPZyuIRdX2UKGgGR7/OJSiudPLxaAdLA2gIR0ClLOEk8ifQdX2UKGgGR7/JZjhDPWxyaAdLA2gIR0ClLZ/x2B8QdX2UKGgGR7/gVVPva11GaAdLBGgIR0ClLSa55JK8dX2UKGgGR7/bnuiN83MqaAdLBGgIR0ClLWa4c3l0dX2UKGgGR7/TIVdonKGMaAdLA2gIR0ClLO/TkQwsdX2UKGgGR7+xkUbkwN9ZaAdLAmgIR0ClLai6xxDLdX2UKGgGR7+i7NB4Uvf1aAdLAWgIR0ClLPQOvt+kdX2UKGgGR7/B0Dlo11nvaAdLAmgIR0ClLW97v5P/dX2UKGgGR7/PEZzgdfb9aAdLA2gIR0ClLTPW6K+BdX2UKGgGR7+ymGdqcmShaAdLAmgIR0ClLP9b5dnkdX2UKGgGR7/LQKrq+rU9aAdLA2gIR0ClLbh2OhkBdX2UKGgGR7/FakhzNliCaAdLA2gIR0ClLX7+kxh2dX2UKGgGR7+3F6zE74i5aAdLAmgIR0ClLcHvlU6xdX2UKGgGR7/ZtbcGkep5aAdLBGgIR0ClLUpsXSBtdX2UKGgGR7/A8yvcJtzkaAdLAmgIR0ClLY0fYBeYdX2UKGgGR7/TOObRWtEHaAdLBGgIR0ClLRfMGHHndX2UKGgGR7/OeOGTLW7OaAdLA2gIR0ClLd13ljmTdX2UKGgGR7+yJLuhK15TaAdLAmgIR0ClLSv114gSdX2UKGgGR7/XXA/LTx5LaAdLBGgIR0ClLW43vQWvdX2UKGgGR7/CjB2wFC9iaAdLAmgIR0ClLe3XZoPDdX2UKGgGR7/WmYjSofjkaAdLBGgIR0ClLbEXtShrdX2UKGgGR7+97MPjGT9saAdLAmgIR0ClLTvWhAW0dX2UKGgGR7/BTgEU0vXcaAdLAmgIR0ClLf+6Ae7udX2UKGgGR7/MOVgQYk3TaAdLA2gIR0ClLYgF5fMOdX2UKGgGR7/EdQO4G2TgaAdLAmgIR0ClLU3oC+10dX2UKGgGR7/QBN21UlzEaAdLA2gIR0ClLcrqUu+RdX2UKGgGR7/G5bQkX1rZaAdLA2gIR0ClLZ9uP3i8dX2UKGgGR7/VDcuanaWYaAdLA2gIR0ClLWUPpY9xdX2UKGgGR7/SMtK7I1cdaAdLBGgIR0ClLh8f/3nIdX2UKGgGR7/W+bmU4aP0aAdLA2gIR0ClLeIakyk9dX2UKGgGR7+RPsRg7YChaAdLAWgIR0ClLacPvrnldX2UKGgGR7+P4AS39aUzaAdLAWgIR0ClLbCaiKzidX2UKGgGR7/EotL+PzWgaAdLA2gIR0ClLXzo+wC9dX2UKGgGR7/TqDbrTpgUaAdLA2gIR0ClLjbxusLfdX2UKGgGR7/QbADaGpMpaAdLA2gIR0ClLfocaOxTdX2UKGgGR7+2YVqN6w+uaAdLAmgIR0ClLb9YfW+XdX2UKGgGR7+4SFoL5RCQaAdLAmgIR0ClLggLRa5gdX2UKGgGR7/VZha1TisGaAdLA2gIR0ClLlAbp/wzdX2UKGgGR7/IFwDNhVlxaAdLA2gIR0ClLdfJmukldX2UKGgGR7/YYl6Z6UqyaAdLBGgIR0ClLZ2rXDm9dX2UKGgGR7/Jc/t6X0GvaAdLA2gIR0ClLiEmhM8HdX2UKGgGR7/S7kGRmseXaAdLA2gIR0ClLmWzfJmvdX2UKGgGR7/Lb+Lm6oVEaAdLA2gIR0ClLbM2WIGhdX2UKGgGR7/T9CeEqUeNaAdLBGgIR0ClLfSQo1DTdX2UKGgGR7+5dJJ5E+gUaAdLAmgIR0ClLnbZOBUadX2UKGgGR7/XY5T6zmfXaAdLBGgIR0ClLkDSXt0FdX2UKGgGR7/UJO32EkB0aAdLBGgIR0ClLdISL61tdX2UKGgGR7/KpfhMrVe8aAdLA2gIR0ClLovOY6XCdX2UKGgGR7/cqvNeMQ2/aAdLBGgIR0ClLhOE25xzdX2UKGgGR7/IS0Sh8IAwaAdLA2gIR0ClLlWXC0ngdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0da211d9c48d34933638802d90f5f07c743a218aee95fa854dba79c2031f8523
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa1228bc4157d0e2aa7fe531bac554534bb7ecb3a0542256943dfac4205c9d30
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b1b680dc700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1b680caf80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691838648233642336, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARszfvcPm5T5ZSVe+bxeIPj5WpTp6c98+RszfvcPm5T5ZSVe+8P9sPvmJTj83SqG/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArzxivzX3pj9n+Yq/aR2Lvx5elL/1fKk/td8BvwoDpT+EWKO/klanPvQiDj/czpu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABGzN+9w+blPllJV76FTOq/7JDTP0/6s79vF4g+PlalOnpz3z5uoe4+cy62ugSfxT5GzN+9w+blPllJV76FTOq/7JDTP0/6s7/w/2w++YlOPzdKob/ndII+SLnePu4ysL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.10927634 0.4490262 -0.21024074]\n [ 0.26580378 0.00126142 0.4364279 ]\n [-0.10927634 0.4490262 -0.21024074]\n [ 0.23144507 0.8067928 -1.2600774 ]]", "desired_goal": "[[-0.88373846 1.3044192 -1.0857362 ]\n [-1.086835 -1.1591222 1.3241259 ]\n [-0.50731975 1.2891552 -1.2761388 ]\n [ 0.32683235 0.55522084 -1.2172503 ]]", "observation": "[[-1.0927634e-01 4.4902620e-01 -2.1024074e-01 -1.8304602e+00\n 1.6528602e+00 -1.4060763e+00]\n [ 2.6580378e-01 1.2614203e-03 4.3642789e-01 4.6607536e-01\n -1.3899341e-03 3.8597882e-01]\n [-1.0927634e-01 4.4902620e-01 -2.1024074e-01 -1.8304602e+00\n 1.6528602e+00 -1.4060763e+00]\n [ 2.3144507e-01 8.0679280e-01 -1.2600774e+00 2.5479814e-01\n 4.3500733e-01 -1.3765543e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACOmQveMAIL0R8HI+pwmkPQYXAz6t7VA+kJdHPZs3Fz6UZQc+z3ZTvafUND0MwMI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07075697 -0.03906335 0.2372439 ]\n [ 0.08009654 0.12801751 0.20403166]\n [ 0.04872853 0.14767306 0.13222343]\n [-0.05162698 0.04414811 0.09509286]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8SakRBeHBWMAWyUSwKMAXSUR0ClLKjawljWdX2UKGgGR7+OAEt/WlMzaAdLAWgIR0ClLK1psXSCdX2UKGgGR7/XOhTOxB3SaAdLBGgIR0ClLHHwPRRedX2UKGgGR7/N/WDpTuOTaAdLA2gIR0ClLO+0w8GLdX2UKGgGR7/RMY/FBIFvaAdLA2gIR0ClLDsLfDUFdX2UKGgGR7+vgccU/OdHaAdLAmgIR0ClLPqKgqVhdX2UKGgGR7/MSjgydnTRaAdLA2gIR0ClLL0TcqOMdX2UKGgGR7/QlF+d9UjtaAdLA2gIR0ClLIGrCFbndX2UKGgGR7/AGorFwT/RaAdLAmgIR0ClLEbQswtbdX2UKGgGR7/EIoE0SAYpaAdLAmgIR0ClLQTYmLLqdX2UKGgGR7+3piZv1lGxaAdLAmgIR0ClLMeL3sX0dX2UKGgGR7/Tq2BreqJeaAdLBGgIR0ClLJVinYQKdX2UKGgGR7/UbVz6rNnoaAdLBGgIR0ClLFq7iADrdX2UKGgGR7/Souf29L6DaAdLA2gIR0ClLRY/3WWhdX2UKGgGR7/JZjhDPWxyaAdLA2gIR0ClLNizLOiWdX2UKGgGR7/IQNCqp97XaAdLA2gIR0ClLGtz0Yj0dX2UKGgGR7/bT6zmfXf7aAdLBGgIR0ClLKtu1ndwdX2UKGgGR7/XSvTw2ETQaAdLBGgIR0ClLSmig00ndX2UKGgGR7/X5UtI065oaAdLBGgIR0ClLOxptaZAdX2UKGgGR7/EzLwF1SwXaAdLAmgIR0ClLLgEdNnHdX2UKGgGR7/TVWCEpRXPaAdLA2gIR0ClLH0h/y5JdX2UKGgGR7+zVJ+UhV2iaAdLAmgIR0ClLTYiX6ZZdX2UKGgGR7/M/cFhXr+paAdLA2gIR0ClLPzr3TNMdX2UKGgGR7/GR+SbH6uXaAdLA2gIR0ClLIrcCYCydX2UKGgGR7/RrJbMX7+DaAdLA2gIR0ClLUO7pV0cdX2UKGgGR7/Y9TP0I1LraAdLBGgIR0ClLMqbjLjhdX2UKGgGR7/SQvpQk5ZKaAdLBGgIR0ClLREz41xbdX2UKGgGR7/MFTNt65XmaAdLA2gIR0ClLJsCLdeqdX2UKGgGR7/RneizsyBTaAdLA2gIR0ClLVQ1JlJ6dX2UKGgGR7/JK2a2F36iaAdLA2gIR0ClLNsJIDoydX2UKGgGR7/D1anrIHTraAdLAmgIR0ClLKUPpY9xdX2UKGgGR7++Pgeii7CjaAdLAmgIR0ClLV49X9zfdX2UKGgGR7/KH6/IsAeaaAdLA2gIR0ClLSEwN9YwdX2UKGgGR7/G2vStvGZNaAdLA2gIR0ClLO15jYqYdX2UKGgGR7+7ikwevIOpaAdLAmgIR0ClLWvTw2ETdX2UKGgGR7+5vOyE+PilaAdLAmgIR0ClLS6shgVodX2UKGgGR7/LZwGW2PT5aAdLA2gIR0ClLLigK4QSdX2UKGgGR7+iEHt4RmK7aAdLAWgIR0ClLTQ4S6DodX2UKGgGR7+ga99MK1G9aAdLAWgIR0ClLL3t0FKTdX2UKGgGR7+3dHlOoHcDaAdLAmgIR0ClLXcVpKzzdX2UKGgGR7/SQmNR3u/laAdLA2gIR0ClLP318LKFdX2UKGgGR7+6e7L+xW1daAdLAmgIR0ClLMc8DB/JdX2UKGgGR7/NmnO0LMLXaAdLA2gIR0ClLUTx5LRKdX2UKGgGR7+9N+LFXJYDaAdLAmgIR0ClLQlkxyn2dX2UKGgGR7/QXS0BwMpgaAdLA2gIR0ClLYewC8vmdX2UKGgGR7+2IacZtNzsaAdLAmgIR0ClLNNjslcAdX2UKGgGR7+ejEehf0EpaAdLAWgIR0ClLYxk3CKrdX2UKGgGR7/ArMC9ytFKaAdLAmgIR0ClLRMtTUAldX2UKGgGR7+RvWH1vl2eaAdLAWgIR0ClLZEmx+rmdX2UKGgGR7/OgNgBtDUmaAdLA2gIR0ClLVPZyuIRdX2UKGgGR7/OJSiudPLxaAdLA2gIR0ClLOEk8ifQdX2UKGgGR7/JZjhDPWxyaAdLA2gIR0ClLZ/x2B8QdX2UKGgGR7/gVVPva11GaAdLBGgIR0ClLSa55JK8dX2UKGgGR7/bnuiN83MqaAdLBGgIR0ClLWa4c3l0dX2UKGgGR7/TIVdonKGMaAdLA2gIR0ClLO/TkQwsdX2UKGgGR7+xkUbkwN9ZaAdLAmgIR0ClLai6xxDLdX2UKGgGR7+i7NB4Uvf1aAdLAWgIR0ClLPQOvt+kdX2UKGgGR7/B0Dlo11nvaAdLAmgIR0ClLW97v5P/dX2UKGgGR7/PEZzgdfb9aAdLA2gIR0ClLTPW6K+BdX2UKGgGR7+ymGdqcmShaAdLAmgIR0ClLP9b5dnkdX2UKGgGR7/LQKrq+rU9aAdLA2gIR0ClLbh2OhkBdX2UKGgGR7/FakhzNliCaAdLA2gIR0ClLX7+kxh2dX2UKGgGR7+3F6zE74i5aAdLAmgIR0ClLcHvlU6xdX2UKGgGR7/ZtbcGkep5aAdLBGgIR0ClLUpsXSBtdX2UKGgGR7/A8yvcJtzkaAdLAmgIR0ClLY0fYBeYdX2UKGgGR7/TOObRWtEHaAdLBGgIR0ClLRfMGHHndX2UKGgGR7/OeOGTLW7OaAdLA2gIR0ClLd13ljmTdX2UKGgGR7+yJLuhK15TaAdLAmgIR0ClLSv114gSdX2UKGgGR7/XXA/LTx5LaAdLBGgIR0ClLW43vQWvdX2UKGgGR7/CjB2wFC9iaAdLAmgIR0ClLe3XZoPDdX2UKGgGR7/WmYjSofjkaAdLBGgIR0ClLbEXtShrdX2UKGgGR7+97MPjGT9saAdLAmgIR0ClLTvWhAW0dX2UKGgGR7/BTgEU0vXcaAdLAmgIR0ClLf+6Ae7udX2UKGgGR7/MOVgQYk3TaAdLA2gIR0ClLYgF5fMOdX2UKGgGR7/EdQO4G2TgaAdLAmgIR0ClLU3oC+10dX2UKGgGR7/QBN21UlzEaAdLA2gIR0ClLcrqUu+RdX2UKGgGR7/G5bQkX1rZaAdLA2gIR0ClLZ9uP3i8dX2UKGgGR7/VDcuanaWYaAdLA2gIR0ClLWUPpY9xdX2UKGgGR7/SMtK7I1cdaAdLBGgIR0ClLh8f/3nIdX2UKGgGR7/W+bmU4aP0aAdLA2gIR0ClLeIakyk9dX2UKGgGR7+RPsRg7YChaAdLAWgIR0ClLacPvrnldX2UKGgGR7+P4AS39aUzaAdLAWgIR0ClLbCaiKzidX2UKGgGR7/EotL+PzWgaAdLA2gIR0ClLXzo+wC9dX2UKGgGR7/TqDbrTpgUaAdLA2gIR0ClLjbxusLfdX2UKGgGR7/QbADaGpMpaAdLA2gIR0ClLfocaOxTdX2UKGgGR7+2YVqN6w+uaAdLAmgIR0ClLb9YfW+XdX2UKGgGR7+4SFoL5RCQaAdLAmgIR0ClLggLRa5gdX2UKGgGR7/VZha1TisGaAdLA2gIR0ClLlAbp/wzdX2UKGgGR7/IFwDNhVlxaAdLA2gIR0ClLdfJmukldX2UKGgGR7/YYl6Z6UqyaAdLBGgIR0ClLZ2rXDm9dX2UKGgGR7/Jc/t6X0GvaAdLA2gIR0ClLiEmhM8HdX2UKGgGR7/S7kGRmseXaAdLA2gIR0ClLmWzfJmvdX2UKGgGR7/Lb+Lm6oVEaAdLA2gIR0ClLbM2WIGhdX2UKGgGR7/T9CeEqUeNaAdLBGgIR0ClLfSQo1DTdX2UKGgGR7+5dJJ5E+gUaAdLAmgIR0ClLnbZOBUadX2UKGgGR7/XY5T6zmfXaAdLBGgIR0ClLkDSXt0FdX2UKGgGR7/UJO32EkB0aAdLBGgIR0ClLdISL61tdX2UKGgGR7/KpfhMrVe8aAdLA2gIR0ClLovOY6XCdX2UKGgGR7/cqvNeMQ2/aAdLBGgIR0ClLhOE25xzdX2UKGgGR7/IS0Sh8IAwaAdLA2gIR0ClLlWXC0ngdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (678 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.184622441790998, "std_reward": 0.09548622516505205, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-12T12:15:36.123354"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6af898d295191fb358a41a2dc808ff1b699682af254e26065916688f183d3aff
|
3 |
+
size 2623
|