helboukkouri
commited on
Commit
•
9e9c634
1
Parent(s):
925f56a
Create tokenization_character_bert.py
Browse files- tokenization_character_bert.py +930 -0
tokenization_character_bert.py
ADDED
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Hicham EL BOUKKOURI, Olivier FERRET, Thomas LAVERGNE, Hiroshi NOJI,
|
3 |
+
# Pierre ZWEIGENBAUM, Junichi TSUJII and The HuggingFace Inc. team.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Tokenization classes for CharacterBERT."""
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from collections import OrderedDict
|
22 |
+
from typing import Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
from transformers.file_utils import is_tf_available, is_torch_available, to_py_obj
|
27 |
+
from transformers.tokenization_utils import (
|
28 |
+
BatchEncoding,
|
29 |
+
EncodedInput,
|
30 |
+
PaddingStrategy,
|
31 |
+
PreTrainedTokenizer,
|
32 |
+
TensorType,
|
33 |
+
_is_control,
|
34 |
+
_is_punctuation,
|
35 |
+
_is_whitespace,
|
36 |
+
)
|
37 |
+
from transformers.tokenization_utils_base import ADDED_TOKENS_FILE
|
38 |
+
from transformers.utils import logging
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
VOCAB_FILES_NAMES = {
|
44 |
+
"mlm_vocab_file": "mlm_vocab.txt",
|
45 |
+
}
|
46 |
+
|
47 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
48 |
+
"mlm_vocab_file": {
|
49 |
+
"helboukkouri/character-bert": "https://huggingface.co/helboukkouri/character-bert/resolve/main/mlm_vocab.txt",
|
50 |
+
"helboukkouri/character-bert-medical": "https://huggingface.co/helboukkouri/character-bert-medical/resolve/main/mlm_vocab.txt",
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"helboukkouri/character-bert": 512,
|
56 |
+
"helboukkouri/character-bert-medical": 512,
|
57 |
+
}
|
58 |
+
|
59 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
60 |
+
"helboukkouri/character-bert": {"max_word_length": 50, "do_lower_case": True},
|
61 |
+
"helboukkouri/character-bert-medical": {"max_word_length": 50, "do_lower_case": True},
|
62 |
+
}
|
63 |
+
|
64 |
+
PAD_TOKEN_CHAR_ID = 0
|
65 |
+
|
66 |
+
|
67 |
+
def whitespace_tokenize(text):
|
68 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
69 |
+
text = text.strip()
|
70 |
+
if not text:
|
71 |
+
return []
|
72 |
+
tokens = text.split()
|
73 |
+
return tokens
|
74 |
+
|
75 |
+
|
76 |
+
def build_mlm_ids_to_tokens_mapping(mlm_vocab_file):
|
77 |
+
"""Builds a Masked Language Modeling ids to masked tokens mapping."""
|
78 |
+
vocabulary = []
|
79 |
+
with open(mlm_vocab_file, "r", encoding="utf-8") as reader:
|
80 |
+
for line in reader:
|
81 |
+
line = line.strip()
|
82 |
+
if line:
|
83 |
+
vocabulary.append(line)
|
84 |
+
return OrderedDict(list(enumerate(vocabulary)))
|
85 |
+
|
86 |
+
|
87 |
+
class CharacterBertTokenizer(PreTrainedTokenizer):
|
88 |
+
"""
|
89 |
+
Construct a CharacterBERT tokenizer. Based on characters.
|
90 |
+
|
91 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
|
92 |
+
Users should refer to this superclass for more information regarding those methods.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
mlm_vocab_file (`str`, *optional*, defaults to `None`):
|
96 |
+
Path to the Masked Language Modeling vocabulary. This is used for converting the output (token ids) of the
|
97 |
+
MLM model into tokens.
|
98 |
+
max_word_length (`int`, *optional*, defaults to `50`):
|
99 |
+
The maximum token length in characters (actually, in bytes as any non-ascii characters will be converted to
|
100 |
+
a sequence of utf-8 bytes).
|
101 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether or not to lowercase the input when tokenizing.
|
103 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not to do basic tokenization before WordPiece.
|
105 |
+
never_split (`Iterable`, *optional*):
|
106 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
107 |
+
`do_basic_tokenize=True`
|
108 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
109 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
110 |
+
token instead.
|
111 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
112 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
113 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
114 |
+
token of a sequence built with special tokens.
|
115 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
116 |
+
The token used for padding, for example when batching sequences of different lengths.
|
117 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
118 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
119 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
120 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
121 |
+
The token used for masking values. This is the token used when training this model with masked language
|
122 |
+
modeling. This is the token which the model will try to predict.
|
123 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
124 |
+
Whether or not to tokenize Chinese characters.
|
125 |
+
strip_accents: (`bool`, *optional*):
|
126 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
127 |
+
value for `lowercase` (as in the original BERT).
|
128 |
+
"""
|
129 |
+
|
130 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
131 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
132 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
133 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
mlm_vocab_file=None,
|
138 |
+
max_word_length=50,
|
139 |
+
do_lower_case=True,
|
140 |
+
do_basic_tokenize=True,
|
141 |
+
never_split=None,
|
142 |
+
unk_token="[UNK]",
|
143 |
+
sep_token="[SEP]",
|
144 |
+
pad_token="[PAD]",
|
145 |
+
cls_token="[CLS]",
|
146 |
+
mask_token="[MASK]",
|
147 |
+
tokenize_chinese_chars=True,
|
148 |
+
strip_accents=None,
|
149 |
+
**kwargs
|
150 |
+
):
|
151 |
+
super().__init__(
|
152 |
+
max_word_length=max_word_length,
|
153 |
+
do_lower_case=do_lower_case,
|
154 |
+
do_basic_tokenize=do_basic_tokenize,
|
155 |
+
never_split=never_split,
|
156 |
+
unk_token=unk_token,
|
157 |
+
sep_token=sep_token,
|
158 |
+
pad_token=pad_token,
|
159 |
+
cls_token=cls_token,
|
160 |
+
mask_token=mask_token,
|
161 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
162 |
+
strip_accents=strip_accents,
|
163 |
+
**kwargs,
|
164 |
+
)
|
165 |
+
# This prevents splitting special tokens during tokenization
|
166 |
+
self.unique_no_split_tokens = [self.cls_token, self.mask_token, self.pad_token, self.sep_token, self.unk_token]
|
167 |
+
# This is used for converting MLM ids into tokens
|
168 |
+
if mlm_vocab_file is None:
|
169 |
+
self.ids_to_tokens = None
|
170 |
+
else:
|
171 |
+
if not os.path.isfile(mlm_vocab_file):
|
172 |
+
raise ValueError(
|
173 |
+
f"Can't find a vocabulary file at path '{mlm_vocab_file}'. "
|
174 |
+
"To load the vocabulary from a pretrained model use "
|
175 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
176 |
+
)
|
177 |
+
self.ids_to_tokens = build_mlm_ids_to_tokens_mapping(mlm_vocab_file)
|
178 |
+
# Tokenization is handled by BasicTokenizer
|
179 |
+
self.do_basic_tokenize = do_basic_tokenize
|
180 |
+
if do_basic_tokenize:
|
181 |
+
self.basic_tokenizer = BasicTokenizer(
|
182 |
+
do_lower_case=do_lower_case,
|
183 |
+
never_split=never_split,
|
184 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
185 |
+
strip_accents=strip_accents,
|
186 |
+
)
|
187 |
+
# Then, a CharacterMapper is responsible for converting tokens into character ids
|
188 |
+
self.max_word_length = max_word_length
|
189 |
+
self._mapper = CharacterMapper(max_word_length=max_word_length)
|
190 |
+
|
191 |
+
def __repr__(self) -> str:
|
192 |
+
# NOTE: we overwrite this because CharacterBERT does not have self.vocab_size
|
193 |
+
return (
|
194 |
+
f"CharacterBertTokenizer(name_or_path='{self.name_or_path}', "
|
195 |
+
+ (f"mlm_vocab_size={self.mlm_vocab_size}, " if self.ids_to_tokens else "")
|
196 |
+
+ f"model_max_len={self.model_max_length}, is_fast={self.is_fast}, "
|
197 |
+
+ f"padding_side='{self.padding_side}', special_tokens={self.special_tokens_map_extended})"
|
198 |
+
)
|
199 |
+
|
200 |
+
def __len__(self):
|
201 |
+
"""
|
202 |
+
Size of the full vocabulary with the added tokens.
|
203 |
+
"""
|
204 |
+
# return self.vocab_size + len(self.added_tokens_encoder)
|
205 |
+
return 0 + len(self.added_tokens_encoder)
|
206 |
+
|
207 |
+
@property
|
208 |
+
def do_lower_case(self):
|
209 |
+
return self.basic_tokenizer.do_lower_case
|
210 |
+
|
211 |
+
@property
|
212 |
+
def vocab_size(self):
|
213 |
+
raise NotImplementedError("CharacterBERT does not use a token vocabulary.")
|
214 |
+
|
215 |
+
@property
|
216 |
+
def mlm_vocab_size(self):
|
217 |
+
if self.ids_to_tokens is None:
|
218 |
+
raise ValueError(
|
219 |
+
"CharacterBertTokenizer was initialized without a MLM "
|
220 |
+
"vocabulary. You can either pass one manually or load a "
|
221 |
+
"pre-trained tokenizer using: "
|
222 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
223 |
+
)
|
224 |
+
return len(self.ids_to_tokens)
|
225 |
+
|
226 |
+
def add_special_tokens(self, *args, **kwargs):
|
227 |
+
raise NotImplementedError("Adding special tokens is not supported for now.")
|
228 |
+
|
229 |
+
def add_tokens(self, *args, **kwargs):
|
230 |
+
# We don't raise an Exception here to allow for ignoring this step.
|
231 |
+
# Otherwise, many inherited methods would need to be re-implemented...
|
232 |
+
pass
|
233 |
+
|
234 |
+
def get_vocab(self):
|
235 |
+
raise NotImplementedError("CharacterBERT does not have a token vocabulary.")
|
236 |
+
|
237 |
+
def get_mlm_vocab(self):
|
238 |
+
return {token: i for i, token in self.ids_to_tokens.items()}
|
239 |
+
|
240 |
+
def _tokenize(self, text):
|
241 |
+
split_tokens = []
|
242 |
+
if self.do_basic_tokenize:
|
243 |
+
split_tokens = self.basic_tokenizer.tokenize(text=text, never_split=self.all_special_tokens)
|
244 |
+
else:
|
245 |
+
split_tokens = whitespace_tokenize(text) # Default to whitespace tokenization
|
246 |
+
return split_tokens
|
247 |
+
|
248 |
+
def convert_tokens_to_string(self, tokens):
|
249 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
250 |
+
out_string = " ".join(tokens).strip()
|
251 |
+
return out_string
|
252 |
+
|
253 |
+
def _convert_token_to_id(self, token):
|
254 |
+
"""Converts a token (str) into a sequence of character ids."""
|
255 |
+
return self._mapper.convert_word_to_char_ids(token)
|
256 |
+
|
257 |
+
def _convert_id_to_token(self, index: List[int]):
|
258 |
+
# NOTE: keeping the same variable name `ìndex` although this will
|
259 |
+
# always be a sequence of indices.
|
260 |
+
"""Converts an index (actually, a list of indices) in a token (str)."""
|
261 |
+
return self._mapper.convert_char_ids_to_word(index)
|
262 |
+
|
263 |
+
def convert_ids_to_tokens(
|
264 |
+
self, ids: Union[List[int], List[List[int]]], skip_special_tokens: bool = False
|
265 |
+
) -> Union[str, List[str]]:
|
266 |
+
"""
|
267 |
+
Converts a single sequence of character indices or a sequence of character id sequences in a token or a
|
268 |
+
sequence of tokens.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
ids (`int` or `List[int]`):
|
272 |
+
The token id (or token ids) to convert to tokens.
|
273 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
274 |
+
Whether or not to remove special tokens in the decoding.
|
275 |
+
|
276 |
+
Returns:
|
277 |
+
`str` or `List[str]`: The decoded token(s).
|
278 |
+
"""
|
279 |
+
if isinstance(ids, list) and isinstance(ids[0], int):
|
280 |
+
if tuple(ids) in self.added_tokens_decoder:
|
281 |
+
return self.added_tokens_decoder[tuple(ids)]
|
282 |
+
else:
|
283 |
+
return self._convert_id_to_token(ids)
|
284 |
+
tokens = []
|
285 |
+
for indices in ids:
|
286 |
+
indices = list(map(int, indices))
|
287 |
+
if skip_special_tokens and tuple(indices) in self.all_special_ids:
|
288 |
+
continue
|
289 |
+
if tuple(indices) in self.added_tokens_decoder:
|
290 |
+
tokens.append(self.added_tokens_decoder[tuple(indices)])
|
291 |
+
else:
|
292 |
+
tokens.append(self._convert_id_to_token(indices))
|
293 |
+
return tokens
|
294 |
+
|
295 |
+
def convert_mlm_id_to_token(self, mlm_id):
|
296 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
297 |
+
if self.ids_to_tokens is None:
|
298 |
+
raise ValueError(
|
299 |
+
"CharacterBertTokenizer was initialized without a MLM "
|
300 |
+
"vocabulary. You can either pass one manually or load a "
|
301 |
+
"pre-trained tokenizer using: "
|
302 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
303 |
+
)
|
304 |
+
assert (
|
305 |
+
mlm_id < self.mlm_vocab_size
|
306 |
+
), "Attempting to convert a MLM id that is greater than the MLM vocabulary size."
|
307 |
+
return self.ids_to_tokens[mlm_id]
|
308 |
+
|
309 |
+
def build_inputs_with_special_tokens(
|
310 |
+
self, token_ids_0: List[List[int]], token_ids_1: Optional[List[List[int]]] = None
|
311 |
+
) -> List[List[int]]:
|
312 |
+
"""
|
313 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
314 |
+
adding special tokens. A CharacterBERT sequence has the following format:
|
315 |
+
|
316 |
+
- single sequence: `[CLS] X [SEP]`
|
317 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
318 |
+
|
319 |
+
Args:
|
320 |
+
token_ids_0 (`List[int]`):
|
321 |
+
List of IDs to which the special tokens will be added.
|
322 |
+
token_ids_1 (`List[int]`, *optional*):
|
323 |
+
Optional second list of IDs for sequence pairs.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
327 |
+
"""
|
328 |
+
if token_ids_1 is None:
|
329 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
330 |
+
cls = [self.cls_token_id]
|
331 |
+
sep = [self.sep_token_id]
|
332 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
333 |
+
|
334 |
+
def get_special_tokens_mask(
|
335 |
+
self,
|
336 |
+
token_ids_0: List[List[int]],
|
337 |
+
token_ids_1: Optional[List[List[int]]] = None,
|
338 |
+
already_has_special_tokens: bool = False,
|
339 |
+
) -> List[int]:
|
340 |
+
"""
|
341 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
342 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
token_ids_0 (`List[int]`):
|
346 |
+
List of IDs.
|
347 |
+
token_ids_1 (`List[int]`, *optional*):
|
348 |
+
Optional second list of IDs for sequence pairs.
|
349 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
350 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
354 |
+
"""
|
355 |
+
if already_has_special_tokens:
|
356 |
+
if token_ids_1 is not None:
|
357 |
+
raise ValueError(
|
358 |
+
"You should not supply a second sequence if the provided sequence of "
|
359 |
+
"ids is already formatted with special tokens for the model."
|
360 |
+
)
|
361 |
+
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
362 |
+
|
363 |
+
if token_ids_1 is not None:
|
364 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
365 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
366 |
+
|
367 |
+
def create_token_type_ids_from_sequences(
|
368 |
+
self, token_ids_0: List[List[int]], token_ids_1: Optional[List[List[int]]] = None
|
369 |
+
) -> List[int]:
|
370 |
+
"""
|
371 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CharacterBERT
|
372 |
+
sequence pair mask has the following format:
|
373 |
+
|
374 |
+
```
|
375 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
|
376 |
+
```
|
377 |
+
|
378 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
379 |
+
|
380 |
+
Args:
|
381 |
+
token_ids_0 (`List[int]`):
|
382 |
+
List of IDs.
|
383 |
+
token_ids_1 (`List[int]`, *optional*):
|
384 |
+
Optional second list of IDs for sequence pairs.
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given
|
388 |
+
sequence(s).
|
389 |
+
"""
|
390 |
+
sep = [self.sep_token_id]
|
391 |
+
cls = [self.cls_token_id]
|
392 |
+
if token_ids_1 is None:
|
393 |
+
return len(cls + token_ids_0 + sep) * [0]
|
394 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
395 |
+
|
396 |
+
# def pad(
|
397 |
+
# self,
|
398 |
+
# encoded_inputs: Union[
|
399 |
+
# BatchEncoding,
|
400 |
+
# List[BatchEncoding],
|
401 |
+
# Dict[str, EncodedInput],
|
402 |
+
# Dict[str, List[EncodedInput]],
|
403 |
+
# List[Dict[str, EncodedInput]],
|
404 |
+
# ],
|
405 |
+
# padding: Union[bool, str, PaddingStrategy] = True,
|
406 |
+
# max_length: Optional[int] = None,
|
407 |
+
# pad_to_multiple_of: Optional[int] = None,
|
408 |
+
# return_attention_mask: Optional[bool] = None,
|
409 |
+
# return_tensors: Optional[Union[str, TensorType]] = None,
|
410 |
+
# verbose: bool = True,
|
411 |
+
# ) -> BatchEncoding:
|
412 |
+
# """
|
413 |
+
# Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
414 |
+
# in the batch.
|
415 |
+
|
416 |
+
# Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
|
417 |
+
# `self.pad_token_id` and `self.pad_token_type_id`)
|
418 |
+
|
419 |
+
# <Tip>
|
420 |
+
|
421 |
+
# If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
422 |
+
# result will use the same type unless you provide a different tensor type with `return_tensors`. In the
|
423 |
+
# case of PyTorch tensors, you will lose the specific device of your tensors however.
|
424 |
+
|
425 |
+
# </Tip>
|
426 |
+
|
427 |
+
# Args:
|
428 |
+
# encoded_inputs (:
|
429 |
+
# class:*~transformers.BatchEncoding*, list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs.
|
430 |
+
# Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a
|
431 |
+
# batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]*
|
432 |
+
# or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a
|
433 |
+
# PyTorch Dataloader collate function.
|
434 |
+
|
435 |
+
# Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
436 |
+
# see the note above for the return type.
|
437 |
+
# padding (:
|
438 |
+
# obj:*bool*, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to
|
439 |
+
# `True`): Select a strategy to pad the returned sequences (according to the model's padding side
|
440 |
+
# and padding index) among:
|
441 |
+
|
442 |
+
# - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
443 |
+
# single sequence if provided).
|
444 |
+
# - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the
|
445 |
+
# maximum acceptable input length for the model if that argument is not provided.
|
446 |
+
# - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
447 |
+
# different lengths).
|
448 |
+
# max_length (`int`, *optional*):
|
449 |
+
# Maximum length of the returned list and optionally padding length (see above).
|
450 |
+
# pad_to_multiple_of (`int`, *optional*):
|
451 |
+
# If set will pad the sequence to a multiple of the provided value.
|
452 |
+
|
453 |
+
# This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
454 |
+
# >= 7.5 (Volta).
|
455 |
+
# return_attention_mask (`bool`, *optional*):
|
456 |
+
# Whether to return the attention mask. If left to the default, will return the attention mask according
|
457 |
+
# to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
458 |
+
|
459 |
+
# [What are attention masks?](../glossary#attention-mask)
|
460 |
+
# return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
461 |
+
# If set, will return tensors instead of list of python integers. Acceptable values are:
|
462 |
+
|
463 |
+
# - `'tf'`: Return TensorFlow `tf.constant` objects.
|
464 |
+
# - `'pt'`: Return PyTorch `torch.Tensor` objects.
|
465 |
+
# - `'np'`: Return Numpy `np.ndarray` objects.
|
466 |
+
# verbose (`bool`, *optional*, defaults to `True`):
|
467 |
+
# Whether or not to print more information and warnings.
|
468 |
+
# """
|
469 |
+
# # If we have a list of dicts, let's convert it in a dict of lists
|
470 |
+
# # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
471 |
+
# if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
472 |
+
# encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
473 |
+
|
474 |
+
# # The model's main input name, usually `input_ids`, has be passed for padding
|
475 |
+
# if self.model_input_names[0] not in encoded_inputs:
|
476 |
+
# raise ValueError(
|
477 |
+
# "You should supply an encoding or a list of encodings to this method "
|
478 |
+
# f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
479 |
+
# )
|
480 |
+
|
481 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
482 |
+
|
483 |
+
# if not required_input:
|
484 |
+
# if return_attention_mask:
|
485 |
+
# encoded_inputs["attention_mask"] = []
|
486 |
+
# return encoded_inputs
|
487 |
+
|
488 |
+
# # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
489 |
+
# # and rebuild them afterwards if no return_tensors is specified
|
490 |
+
# # Note that we lose the specific device the tensor may be on for PyTorch
|
491 |
+
|
492 |
+
# first_element = required_input[0]
|
493 |
+
# if isinstance(first_element, (list, tuple)):
|
494 |
+
# # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
495 |
+
# index = 0
|
496 |
+
# while len(required_input[index]) == 0:
|
497 |
+
# index += 1
|
498 |
+
# if index < len(required_input):
|
499 |
+
# first_element = required_input[index][0]
|
500 |
+
# # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
501 |
+
# if not isinstance(first_element, (int, list, tuple)):
|
502 |
+
# if is_tf_available() and _is_tensorflow(first_element):
|
503 |
+
# return_tensors = "tf" if return_tensors is None else return_tensors
|
504 |
+
# elif is_torch_available() and _is_torch(first_element):
|
505 |
+
# return_tensors = "pt" if return_tensors is None else return_tensors
|
506 |
+
# elif isinstance(first_element, np.ndarray):
|
507 |
+
# return_tensors = "np" if return_tensors is None else return_tensors
|
508 |
+
# else:
|
509 |
+
# raise ValueError(
|
510 |
+
# f"type of {first_element} unknown: {type(first_element)}. "
|
511 |
+
# f"Should be one of a python, numpy, pytorch or tensorflow object."
|
512 |
+
# )
|
513 |
+
|
514 |
+
# for key, value in encoded_inputs.items():
|
515 |
+
# encoded_inputs[key] = to_py_obj(value)
|
516 |
+
|
517 |
+
# # Convert padding_strategy in PaddingStrategy
|
518 |
+
# padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
519 |
+
# padding=padding, max_length=max_length, verbose=verbose
|
520 |
+
# )
|
521 |
+
|
522 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
523 |
+
# if required_input and not isinstance(required_input[0][0], (list, tuple)):
|
524 |
+
# encoded_inputs = self._pad(
|
525 |
+
# encoded_inputs,
|
526 |
+
# max_length=max_length,
|
527 |
+
# padding_strategy=padding_strategy,
|
528 |
+
# pad_to_multiple_of=pad_to_multiple_of,
|
529 |
+
# return_attention_mask=return_attention_mask,
|
530 |
+
# )
|
531 |
+
# return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
532 |
+
|
533 |
+
# batch_size = len(required_input)
|
534 |
+
# assert all(
|
535 |
+
# len(v) == batch_size for v in encoded_inputs.values()
|
536 |
+
# ), "Some items in the output dictionary have a different batch size than others."
|
537 |
+
|
538 |
+
# if padding_strategy == PaddingStrategy.LONGEST:
|
539 |
+
# max_length = max(len(inputs) for inputs in required_input)
|
540 |
+
# padding_strategy = PaddingStrategy.MAX_LENGTH
|
541 |
+
|
542 |
+
# batch_outputs = {}
|
543 |
+
# for i in range(batch_size):
|
544 |
+
# inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
545 |
+
# outputs = self._pad(
|
546 |
+
# inputs,
|
547 |
+
# max_length=max_length,
|
548 |
+
# padding_strategy=padding_strategy,
|
549 |
+
# pad_to_multiple_of=pad_to_multiple_of,
|
550 |
+
# return_attention_mask=return_attention_mask,
|
551 |
+
# )
|
552 |
+
|
553 |
+
# for key, value in outputs.items():
|
554 |
+
# if key not in batch_outputs:
|
555 |
+
# batch_outputs[key] = []
|
556 |
+
# batch_outputs[key].append(value)
|
557 |
+
|
558 |
+
# return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
559 |
+
|
560 |
+
# def _pad(
|
561 |
+
# self,
|
562 |
+
# encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
563 |
+
# max_length: Optional[int] = None,
|
564 |
+
# padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
565 |
+
# pad_to_multiple_of: Optional[int] = None,
|
566 |
+
# return_attention_mask: Optional[bool] = None,
|
567 |
+
# ) -> dict:
|
568 |
+
# """
|
569 |
+
# Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
570 |
+
|
571 |
+
# Args:
|
572 |
+
# encoded_inputs:
|
573 |
+
# Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
574 |
+
# max_length: maximum length of the returned list and optionally padding length (see below).
|
575 |
+
# Will truncate by taking into account the special tokens.
|
576 |
+
# padding_strategy: PaddingStrategy to use for padding.
|
577 |
+
|
578 |
+
# - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
579 |
+
# - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
580 |
+
# - PaddingStrategy.DO_NOT_PAD: Do not pad
|
581 |
+
# The tokenizer padding sides are defined in self.padding_side:
|
582 |
+
|
583 |
+
# - 'left': pads on the left of the sequences
|
584 |
+
# - 'right': pads on the right of the sequences
|
585 |
+
# pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
586 |
+
# This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
587 |
+
# >= 7.5 (Volta).
|
588 |
+
# return_attention_mask:
|
589 |
+
# (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
590 |
+
# """
|
591 |
+
# # Load from model defaults
|
592 |
+
# if return_attention_mask is None:
|
593 |
+
# return_attention_mask = "attention_mask" in self.model_input_names
|
594 |
+
|
595 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
596 |
+
|
597 |
+
# if padding_strategy == PaddingStrategy.LONGEST:
|
598 |
+
# max_length = len(required_input)
|
599 |
+
|
600 |
+
# if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
601 |
+
# max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
602 |
+
|
603 |
+
# needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
604 |
+
|
605 |
+
# if needs_to_be_padded:
|
606 |
+
# difference = max_length - len(required_input)
|
607 |
+
# if self.padding_side == "right":
|
608 |
+
# if return_attention_mask:
|
609 |
+
# encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
610 |
+
# if "token_type_ids" in encoded_inputs:
|
611 |
+
# encoded_inputs["token_type_ids"] = (
|
612 |
+
# encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
613 |
+
# )
|
614 |
+
# if "special_tokens_mask" in encoded_inputs:
|
615 |
+
# encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
616 |
+
# encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
617 |
+
# elif self.padding_side == "left":
|
618 |
+
# if return_attention_mask:
|
619 |
+
# encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
620 |
+
# if "token_type_ids" in encoded_inputs:
|
621 |
+
# encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
622 |
+
# "token_type_ids"
|
623 |
+
# ]
|
624 |
+
# if "special_tokens_mask" in encoded_inputs:
|
625 |
+
# encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
626 |
+
# encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
627 |
+
# else:
|
628 |
+
# raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
629 |
+
# elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
630 |
+
# if isinstance(encoded_inputs["token_type_ids"], list):
|
631 |
+
# encoded_inputs["attention_mask"] = [1] * len(required_input)
|
632 |
+
# else:
|
633 |
+
# encoded_inputs["attention_mask"] = 1
|
634 |
+
|
635 |
+
# return encoded_inputs
|
636 |
+
|
637 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
638 |
+
logger.warning("CharacterBERT does not have a token vocabulary. " "Skipping saving `vocab.txt`.")
|
639 |
+
return ()
|
640 |
+
|
641 |
+
def save_mlm_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
642 |
+
# NOTE: CharacterBERT has no token vocabulary, this is just to allow
|
643 |
+
# saving tokenizer configuration via CharacterBertTokenizer.save_pretrained
|
644 |
+
if os.path.isdir(save_directory):
|
645 |
+
vocab_file = os.path.join(
|
646 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + "mlm_vocab.txt"
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
650 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
651 |
+
for _, token in self.ids_to_tokens.items():
|
652 |
+
f.write(token + "\n")
|
653 |
+
return (vocab_file,)
|
654 |
+
|
655 |
+
def _save_pretrained(
|
656 |
+
self,
|
657 |
+
save_directory: Union[str, os.PathLike],
|
658 |
+
file_names: Tuple[str],
|
659 |
+
legacy_format: Optional[bool] = None,
|
660 |
+
filename_prefix: Optional[str] = None,
|
661 |
+
) -> Tuple[str]:
|
662 |
+
"""
|
663 |
+
Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens.
|
664 |
+
|
665 |
+
Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the
|
666 |
+
specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`]
|
667 |
+
"""
|
668 |
+
if legacy_format is False:
|
669 |
+
raise ValueError(
|
670 |
+
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
|
671 |
+
)
|
672 |
+
|
673 |
+
save_directory = str(save_directory)
|
674 |
+
|
675 |
+
added_tokens_file = os.path.join(
|
676 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
|
677 |
+
)
|
678 |
+
added_vocab = self.get_added_vocab()
|
679 |
+
if added_vocab:
|
680 |
+
with open(added_tokens_file, "w", encoding="utf-8") as f:
|
681 |
+
out_str = json.dumps(added_vocab, ensure_ascii=False)
|
682 |
+
f.write(out_str)
|
683 |
+
logger.info(f"added tokens file saved in {added_tokens_file}")
|
684 |
+
|
685 |
+
vocab_files = self.save_mlm_vocabulary(save_directory, filename_prefix=filename_prefix)
|
686 |
+
|
687 |
+
return file_names + vocab_files + (added_tokens_file,)
|
688 |
+
|
689 |
+
|
690 |
+
class BasicTokenizer(object):
|
691 |
+
"""
|
692 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
693 |
+
|
694 |
+
Args:
|
695 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
696 |
+
Whether or not to lowercase the input when tokenizing.
|
697 |
+
never_split (`Iterable`, *optional*):
|
698 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
699 |
+
`do_basic_tokenize=True`
|
700 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
701 |
+
Whether or not to tokenize Chinese characters.
|
702 |
+
|
703 |
+
This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)).
|
704 |
+
strip_accents: (`bool`, *optional*):
|
705 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
706 |
+
value for `lowercase` (as in the original BERT).
|
707 |
+
"""
|
708 |
+
|
709 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
710 |
+
if never_split is None:
|
711 |
+
never_split = []
|
712 |
+
self.do_lower_case = do_lower_case
|
713 |
+
self.never_split = set(never_split)
|
714 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
715 |
+
self.strip_accents = strip_accents
|
716 |
+
|
717 |
+
def tokenize(self, text, never_split=None):
|
718 |
+
"""
|
719 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
720 |
+
WordPieceTokenizer.
|
721 |
+
|
722 |
+
Args:
|
723 |
+
**never_split**: (*optional*) list of str
|
724 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
725 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
726 |
+
"""
|
727 |
+
# union() returns a new set by concatenating the two sets.
|
728 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
729 |
+
text = self._clean_text(text)
|
730 |
+
|
731 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
732 |
+
# models. This is also applied to the English models now, but it doesn't
|
733 |
+
# matter since the English models were not trained on any Chinese data
|
734 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
735 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
736 |
+
# words in the English Wikipedia.).
|
737 |
+
if self.tokenize_chinese_chars:
|
738 |
+
text = self._tokenize_chinese_chars(text)
|
739 |
+
orig_tokens = whitespace_tokenize(text)
|
740 |
+
split_tokens = []
|
741 |
+
for token in orig_tokens:
|
742 |
+
if token not in never_split:
|
743 |
+
if self.do_lower_case:
|
744 |
+
token = token.lower()
|
745 |
+
if self.strip_accents is not False:
|
746 |
+
token = self._run_strip_accents(token)
|
747 |
+
elif self.strip_accents:
|
748 |
+
token = self._run_strip_accents(token)
|
749 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
750 |
+
|
751 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
752 |
+
return output_tokens
|
753 |
+
|
754 |
+
def _run_strip_accents(self, text):
|
755 |
+
"""Strips accents from a piece of text."""
|
756 |
+
text = unicodedata.normalize("NFD", text)
|
757 |
+
output = []
|
758 |
+
for char in text:
|
759 |
+
cat = unicodedata.category(char)
|
760 |
+
if cat == "Mn":
|
761 |
+
continue
|
762 |
+
output.append(char)
|
763 |
+
return "".join(output)
|
764 |
+
|
765 |
+
def _run_split_on_punc(self, text, never_split=None):
|
766 |
+
"""Splits punctuation on a piece of text."""
|
767 |
+
if never_split is not None and text in never_split:
|
768 |
+
return [text]
|
769 |
+
chars = list(text)
|
770 |
+
i = 0
|
771 |
+
start_new_word = True
|
772 |
+
output = []
|
773 |
+
while i < len(chars):
|
774 |
+
char = chars[i]
|
775 |
+
if _is_punctuation(char):
|
776 |
+
output.append([char])
|
777 |
+
start_new_word = True
|
778 |
+
else:
|
779 |
+
if start_new_word:
|
780 |
+
output.append([])
|
781 |
+
start_new_word = False
|
782 |
+
output[-1].append(char)
|
783 |
+
i += 1
|
784 |
+
|
785 |
+
return ["".join(x) for x in output]
|
786 |
+
|
787 |
+
def _tokenize_chinese_chars(self, text):
|
788 |
+
"""Adds whitespace around any CJK character."""
|
789 |
+
output = []
|
790 |
+
for char in text:
|
791 |
+
cp = ord(char)
|
792 |
+
if self._is_chinese_char(cp):
|
793 |
+
output.append(" ")
|
794 |
+
output.append(char)
|
795 |
+
output.append(" ")
|
796 |
+
else:
|
797 |
+
output.append(char)
|
798 |
+
return "".join(output)
|
799 |
+
|
800 |
+
def _is_chinese_char(self, cp):
|
801 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
802 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
803 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
804 |
+
#
|
805 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
806 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
807 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
808 |
+
# space-separated words, so they are not treated specially and handled
|
809 |
+
# like the all of the other languages.
|
810 |
+
if (
|
811 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
812 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
813 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
814 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
815 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
816 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
817 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
818 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
819 |
+
): #
|
820 |
+
return True
|
821 |
+
|
822 |
+
return False
|
823 |
+
|
824 |
+
def _clean_text(self, text):
|
825 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
826 |
+
output = []
|
827 |
+
for char in text:
|
828 |
+
cp = ord(char)
|
829 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
830 |
+
continue
|
831 |
+
if _is_whitespace(char):
|
832 |
+
output.append(" ")
|
833 |
+
else:
|
834 |
+
output.append(char)
|
835 |
+
return "".join(output)
|
836 |
+
|
837 |
+
|
838 |
+
class CharacterMapper:
|
839 |
+
"""
|
840 |
+
NOTE: Adapted from ElmoCharacterMapper:
|
841 |
+
https://github.com/allenai/allennlp/blob/main/allennlp/data/token_indexers/elmo_indexer.py Maps individual tokens
|
842 |
+
to sequences of character ids, compatible with CharacterBERT.
|
843 |
+
"""
|
844 |
+
|
845 |
+
# char ids 0-255 come from utf-8 encoding bytes
|
846 |
+
# assign 256-300 to special chars
|
847 |
+
beginning_of_sentence_character = 256 # <begin sentence>
|
848 |
+
end_of_sentence_character = 257 # <end sentence>
|
849 |
+
beginning_of_word_character = 258 # <begin word>
|
850 |
+
end_of_word_character = 259 # <end word>
|
851 |
+
padding_character = 260 # <padding> | short tokens are padded using this + 1
|
852 |
+
mask_character = 261 # <mask>
|
853 |
+
|
854 |
+
bos_token = "[CLS]" # previously: bos_token = "<S>"
|
855 |
+
eos_token = "[SEP]" # previously: eos_token = "</S>"
|
856 |
+
pad_token = "[PAD]"
|
857 |
+
mask_token = "[MASK]"
|
858 |
+
|
859 |
+
def __init__(
|
860 |
+
self,
|
861 |
+
max_word_length: int = 50,
|
862 |
+
):
|
863 |
+
self.max_word_length = max_word_length
|
864 |
+
self.beginning_of_sentence_characters = self._make_char_id_sequence(self.beginning_of_sentence_character)
|
865 |
+
self.end_of_sentence_characters = self._make_char_id_sequence(self.end_of_sentence_character)
|
866 |
+
self.mask_characters = self._make_char_id_sequence(self.mask_character)
|
867 |
+
# This is the character id sequence for the pad token (i.e. [PAD]).
|
868 |
+
# We remove 1 because we will add 1 later on and it will be equal to 0.
|
869 |
+
self.pad_characters = [PAD_TOKEN_CHAR_ID - 1] * self.max_word_length
|
870 |
+
|
871 |
+
def _make_char_id_sequence(self, character: int):
|
872 |
+
char_ids = [self.padding_character] * self.max_word_length
|
873 |
+
char_ids[0] = self.beginning_of_word_character
|
874 |
+
char_ids[1] = character
|
875 |
+
char_ids[2] = self.end_of_word_character
|
876 |
+
return char_ids
|
877 |
+
|
878 |
+
def convert_word_to_char_ids(self, word: str) -> List[int]:
|
879 |
+
if word == self.bos_token:
|
880 |
+
char_ids = self.beginning_of_sentence_characters
|
881 |
+
elif word == self.eos_token:
|
882 |
+
char_ids = self.end_of_sentence_characters
|
883 |
+
elif word == self.mask_token:
|
884 |
+
char_ids = self.mask_characters
|
885 |
+
elif word == self.pad_token:
|
886 |
+
char_ids = self.pad_characters
|
887 |
+
else:
|
888 |
+
# Convert characters to indices
|
889 |
+
word_encoded = word.encode("utf-8", "ignore")[: (self.max_word_length - 2)]
|
890 |
+
# Initialize character_ids with padding
|
891 |
+
char_ids = [self.padding_character] * self.max_word_length
|
892 |
+
# First character is BeginningOfWord
|
893 |
+
char_ids[0] = self.beginning_of_word_character
|
894 |
+
# Populate character_ids with computed indices
|
895 |
+
for k, chr_id in enumerate(word_encoded, start=1):
|
896 |
+
char_ids[k] = chr_id
|
897 |
+
# Last character is EndOfWord
|
898 |
+
char_ids[len(word_encoded) + 1] = self.end_of_word_character
|
899 |
+
|
900 |
+
# +1 one for masking so that character padding == 0
|
901 |
+
# char_ids domain is therefore: (1, 256) for actual characters
|
902 |
+
# and (257-262) for special symbols (BOS/EOS/BOW/EOW/padding/MLM Mask)
|
903 |
+
return [c + 1 for c in char_ids]
|
904 |
+
|
905 |
+
def convert_char_ids_to_word(self, char_ids: List[int]) -> str:
|
906 |
+
"Converts a sequence of character ids into its corresponding word."
|
907 |
+
|
908 |
+
assert len(char_ids) <= self.max_word_length, (
|
909 |
+
f"Got character sequence of length {len(char_ids)} while `max_word_length={self.max_word_length}`"
|
910 |
+
)
|
911 |
+
|
912 |
+
char_ids_ = [(i - 1) for i in char_ids]
|
913 |
+
if char_ids_ == self.beginning_of_sentence_characters:
|
914 |
+
return self.bos_token
|
915 |
+
elif char_ids_ == self.end_of_sentence_characters:
|
916 |
+
return self.eos_token
|
917 |
+
elif char_ids_ == self.mask_characters:
|
918 |
+
return self.mask_token
|
919 |
+
elif char_ids_ == self.pad_characters: # token padding
|
920 |
+
return self.pad_token
|
921 |
+
else:
|
922 |
+
utf8_codes = list(
|
923 |
+
filter(
|
924 |
+
lambda x: (x != self.padding_character)
|
925 |
+
and (x != self.beginning_of_word_character)
|
926 |
+
and (x != self.end_of_word_character),
|
927 |
+
char_ids_,
|
928 |
+
)
|
929 |
+
)
|
930 |
+
return bytes(utf8_codes).decode("utf-8")
|