mattwoodx commited on
Commit
cacebd7
·
verified ·
1 Parent(s): fa90893

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -76
README.md CHANGED
@@ -1,77 +1,90 @@
1
- ---
2
- license: cc-by-nc-sa-4.0
3
- tags:
4
- - Helical
5
- - RNA
6
- - Transformers
7
- - Sequence
8
- - biology
9
- - mrna
10
- - rna
11
- - genomics
12
- library_name: transformers
13
- ---
14
- # Helix-mRNA-v0
15
-
16
- Helix-mRNA emerges as a hybrid state-space and transformer based model, leveraging both the efficient sequence processing capabilities of Mamba2's state-space architecture and the contextual understanding of transformer attention mechanisms, allowing for the best of both worlds between these two approaches. These traits make it particularly suitable for studying full-length transcripts, splice variants, and complex mRNA structural elements.
17
-
18
- We tokenize mRNA sequences at single-nucleotide resolution by mapping each nucleotide (A, C, U, G) and ambiguous base (N) to a unique integer. A further special character E is incorporated into the sequence, denoting the start of each codon. This fine-grained approach maximizes the model's ability to extract patterns from the sequences. Unlike coarser tokenization methods that might group nucleotides together or use k-mer based approaches, our single-nucleotide resolution preserves the full sequential information of the mRNA molecule. This simple yet effective encoding scheme ensures that no information is lost during the preprocessing stage, allowing the downstream model to learn directly from the raw sequence composition.
19
-
20
- <p align="center">
21
- <img src="assets/results_graph.png" alt="bar_charts" width="750"/>
22
- <figcaption align="center">Helix-mRNA benchmark comparison against Transformer HELM, Transformer XE and CodonBERT.</figcaption>
23
- </p>
24
-
25
- Read more about it in our <a target="_blank">[blog post](https://www.helical-ai.com/blog/helix-mrna-v0)</a>!
26
-
27
- # Helical<a name="helical"></a>
28
-
29
- #### Install the package
30
-
31
- Run the following to install the <a target="_blank">[Helical](https://github.com/helicalAI/helical)</a> package via pip:
32
- ```console
33
- pip install --upgrade helical
34
- ```
35
-
36
- #### Generate Embeddings
37
- ```python
38
- from helical import HelixmRNA, HelixmRNAConfig
39
- import torch
40
-
41
- device = "cuda" if torch.cuda.is_available() else "cpu"
42
-
43
- input_sequences = ["EACU"*20, "EAUG"*20, "EAUG"*20, "EACU"*20, "EAUU"*20]
44
-
45
- helix_mrna_config = HelixmRNAConfig(batch_size=5, device=device, max_length=100)
46
- helix_mrna = HelixmRNA(configurer=helix_mrna_config)
47
-
48
- # prepare data for input to the model
49
- processed_input_data = helix_mrna.process_data(input_sequences)
50
-
51
- # generate the embeddings for the processed data
52
- embeddings = helix_mrna.get_embeddings(processed_input_data)
53
- ```
54
-
55
- #### Fine-Tuning
56
- Classification fine-tuning example:
57
- ```python
58
- from helical import HelixmRNAFineTuningModel, HelixmRNAConfig
59
- import torch
60
-
61
- device = "cuda" if torch.cuda.is_available() else "cpu"
62
-
63
- input_sequences = ["EACU"*20, "EAUG"*20, "EAUG"*20, "EACU"*20, "EAUU"*20]
64
- labels = [0, 2, 2, 0, 1]
65
-
66
- helixr_config = HelixmRNAConfig(batch_size=5, device=device, max_length=100)
67
- helixr_fine_tune = HelixmRNAFineTuningModel(helix_mrna_config=helixr_config, fine_tuning_head="classification", output_size=3)
68
-
69
- # prepare data for input to the model
70
- train_dataset = helixr_fine_tune.process_data(input_sequences)
71
-
72
- # fine-tune the model with the relevant training labels
73
- helixr_fine_tune.train(train_dataset=train_dataset, train_labels=labels)
74
-
75
- # get outputs from the fine-tuned model on a processed dataset
76
- outputs = helixr_fine_tune.get_outputs(train_dataset)
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  ```
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - Helical
5
+ - RNA
6
+ - Transformers
7
+ - Sequence
8
+ - biology
9
+ - mrna
10
+ - rna
11
+ - genomics
12
+ library_name: transformers
13
+ ---
14
+ # Helix-mRNA-v0
15
+
16
+ Helix-mRNA emerges as a hybrid state-space and transformer based model, leveraging both the efficient sequence processing capabilities of Mamba2's state-space architecture and the contextual understanding of transformer attention mechanisms, allowing for the best of both worlds between these two approaches. These traits make it particularly suitable for studying full-length transcripts, splice variants, and complex mRNA structural elements.
17
+
18
+ We tokenize mRNA sequences at single-nucleotide resolution by mapping each nucleotide (A, C, U, G) and ambiguous base (N) to a unique integer. A further special character E is incorporated into the sequence, denoting the start of each codon. This fine-grained approach maximizes the model's ability to extract patterns from the sequences. Unlike coarser tokenization methods that might group nucleotides together or use k-mer based approaches, our single-nucleotide resolution preserves the full sequential information of the mRNA molecule. This simple yet effective encoding scheme ensures that no information is lost during the preprocessing stage, allowing the downstream model to learn directly from the raw sequence composition.
19
+
20
+ <p align="center">
21
+ <img src="assets/results_graph.png" alt="bar_charts" width="750"/>
22
+ <figcaption align="center">Helix-mRNA benchmark comparison against Transformer HELM, Transformer XE and CodonBERT.</figcaption>
23
+ </p>
24
+
25
+ Read more about it in our <a target="_blank">[blog post](https://www.helical-ai.com/blog/helix-mrna-v0)</a>!
26
+
27
+ # Helical<a name="helical"></a>
28
+
29
+ #### Install the package
30
+
31
+ Run the following to install the <a target="_blank">[Helical](https://github.com/helicalAI/helical)</a> package via pip:
32
+ ```console
33
+ pip install --upgrade helical
34
+ ```
35
+
36
+ #### Generate Embeddings
37
+ ```python
38
+ from helical import HelixmRNA, HelixmRNAConfig
39
+ import torch
40
+
41
+ device = "cuda" if torch.cuda.is_available() else "cpu"
42
+
43
+ input_sequences = ["EACU"*20, "EAUG"*20, "EAUG"*20, "EACU"*20, "EAUU"*20]
44
+
45
+ helix_mrna_config = HelixmRNAConfig(batch_size=5, device=device, max_length=100)
46
+ helix_mrna = HelixmRNA(configurer=helix_mrna_config)
47
+
48
+ # prepare data for input to the model
49
+ processed_input_data = helix_mrna.process_data(input_sequences)
50
+
51
+ # generate the embeddings for the processed data
52
+ embeddings = helix_mrna.get_embeddings(processed_input_data)
53
+ ```
54
+
55
+ #### Fine-Tuning
56
+ Classification fine-tuning example:
57
+ ```python
58
+ from helical import HelixmRNAFineTuningModel, HelixmRNAConfig
59
+ import torch
60
+
61
+ device = "cuda" if torch.cuda.is_available() else "cpu"
62
+
63
+ input_sequences = ["EACU"*20, "EAUG"*20, "EAUG"*20, "EACU"*20, "EAUU"*20]
64
+ labels = [0, 2, 2, 0, 1]
65
+
66
+ helixr_config = HelixmRNAConfig(batch_size=5, device=device, max_length=100)
67
+ helixr_fine_tune = HelixmRNAFineTuningModel(helix_mrna_config=helixr_config, fine_tuning_head="classification", output_size=3)
68
+
69
+ # prepare data for input to the model
70
+ train_dataset = helixr_fine_tune.process_data(input_sequences)
71
+
72
+ # fine-tune the model with the relevant training labels
73
+ helixr_fine_tune.train(train_dataset=train_dataset, train_labels=labels)
74
+
75
+ # get outputs from the fine-tuned model on a processed dataset
76
+ outputs = helixr_fine_tune.get_outputs(train_dataset)
77
+ ```
78
+
79
+ ```bibtex
80
+ @software{allard_2024_13135902,
81
+ author = {Helical Team},
82
+ title = {helicalAI/helical: v0.0.1-alpha10},
83
+ month = nov,
84
+ year = 2024,
85
+ publisher = {Zenodo},
86
+ version = {0.0.1a10},
87
+ doi = {10.5281/zenodo.13135902},
88
+ url = {https://doi.org/10.5281/zenodo.13135902}
89
+ }
90
  ```