File size: 2,482 Bytes
7bdeccf d436fb1 7bdeccf 96790fc 7bdeccf fec13f8 7bdeccf c7517ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
language: "it"
tags:
- bert
- sarcasm-detection
- text-classification
widget:
- text: "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
---
# Italian Sarcasm Detector
Italian Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) and the training data consists of scraped data from Italian non-sarcastic newspaper (Il Giornale) and sarcastic newspaper (Lercio).
<b>Labels</b>:
0 -> Not Sarcastic;
1 -> Sarcastic
## Training Data
Scraped data:
- Italian non-sarcastic news from [Il Giornale](https://www.ilgiornale.it)
- Italian sarcastic news from [Lercio](https://www.lercio.it)
Codebase:
- Git Repo: [Official repository](https://github.com/helinivan/multilingual-sarcasm-detector)
---
## Example of classification
```python
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import string
def preprocess_data(text: str) -> str:
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
MODEL_PATH = "helinivan/italian-sarcasm-detector"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
text = "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
output = model(**tokenized_text)
probs = output.logits.softmax(dim=-1).tolist()[0]
confidence = max(probs)
prediction = probs.index(confidence)
results = {"is_sarcastic": prediction, "confidence": confidence}
```
Output:
```
{'is_sarcastic': 1, 'confidence': 0.9999909400939941}
```
## Performance
| Model-Name | F1 | Precision | Recall | Accuracy
| ------------- |:-------------| -----| -----| ----|
| [helinivan/english-sarcasm-detector ](https://huggingface.co/helinivan/english-sarcasm-detector)| 92.38 | 92.75 | 92.38 | 92.42
| [helinivan/italian-sarcasm-detector ](https://huggingface.co/helinivan/italian-sarcasm-detector) | **88.26** | 87.66 | 89.66 | 88.69
| [helinivan/multilingual-sarcasm-detector ](https://huggingface.co/helinivan/multilingual-sarcasm-detector) | 87.23 | 88.65 | 86.33 | 88.30
| [helinivan/dutch-sarcasm-detector ](https://huggingface.co/helinivan/dutch-sarcasm-detector) | 83.02 | 84.27 | 82.01 | 86.81 |