helinivan commited on
Commit
50058f1
1 Parent(s): 6146e12

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: "multilingual"
3
+ tags:
4
+ - bert
5
+ - sarcasm-detection
6
+ - text-classification
7
+ widget:
8
+ - text: "CIA Realizes It's Been Using Black Highlighters All These Years."
9
+ ---
10
+
11
+ # Multilingual Sarcasm Detector
12
+
13
+ Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on bert-multilingual uncased and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian.
14
+
15
+ ## Metrics:
16
+
17
+
18
+ ## Training Data
19
+
20
+ Datasets:
21
+ - English language data: [Kaggle: News Headlines Dataset For Sarcasm Detection]([https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detection]).
22
+ - Dutch non-sarcastic data: [Kaggle: Dutch News Articles]([https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles])
23
+
24
+ Scraped data:
25
+ - Dutch sarcastic news from [De Speld]([https://speld.nl])
26
+ - Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
27
+ - Italian sarcastic news from [Lercio]([https://www.lercio.it])
28
+
29
+ Codebase:
30
+ - Git Repo: [Official repository]([https://github.com/helinivan/multilingual-sarcasm-detector]).
31
+
32
+ ---
33
+
34
+ ## Example of classification
35
+
36
+ ```python
37
+ from transformers import AutoModelForSequenceClassification
38
+ from transformers import AutoTokenizer
39
+ import string
40
+
41
+ def preprocess_data(text: str) -> str:
42
+ return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
43
+
44
+ MODEL_PATH = "helinivan/multilingual-sarcasm-detector"
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
47
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
48
+
49
+ text = "CIA Realizes It's Been Using Black Highlighters All These Years."
50
+ tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
51
+ output = model(**tokenized_text)
52
+ probs = output.logits.softmax(dim=-1).tolist()[0]
53
+ confidence = max(probs)
54
+ prediction = probs.index(confidence)
55
+ results = {"is_sarcastic": prediction, "confidence": confidence}
56
+
57
+ ```
58
+
59
+ Output:
60
+
61
+ ```
62
+ {'is_sarcastic': 1, 'confidence': 0.9999909400939941}
63
+ ```
64
+
65
+ ## Performance
66
+ | Model-Name | F1 | Precision | Recall | Accuracy
67
+ | ------------- |:-------------| -----| -----| ----|
68
+ | helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55