Update README.md
Browse files
README.md
CHANGED
@@ -1,28 +1,23 @@
|
|
1 |
---
|
2 |
-
language: "
|
3 |
tags:
|
4 |
- bert
|
5 |
- sarcasm-detection
|
6 |
- text-classification
|
7 |
widget:
|
8 |
-
- text: "
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
|
14 |
|
15 |
## Metrics:
|
16 |
|
17 |
|
18 |
## Training Data
|
19 |
|
20 |
-
Datasets:
|
21 |
-
- English language data: [Kaggle: News Headlines Dataset For Sarcasm Detection]([https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detection]).
|
22 |
-
- Dutch non-sarcastic data: [Kaggle: Dutch News Articles]([https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles])
|
23 |
-
|
24 |
Scraped data:
|
25 |
-
- Dutch sarcastic news from [De Speld]([https://speld.nl])
|
26 |
- Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
|
27 |
- Italian sarcastic news from [Lercio]([https://www.lercio.it])
|
28 |
|
@@ -41,12 +36,12 @@ import string
|
|
41 |
def preprocess_data(text: str) -> str:
|
42 |
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
|
43 |
|
44 |
-
MODEL_PATH = "helinivan/
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
47 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
48 |
|
49 |
-
text = "
|
50 |
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
|
51 |
output = model(**tokenized_text)
|
52 |
probs = output.logits.softmax(dim=-1).tolist()[0]
|
@@ -66,4 +61,5 @@ Output:
|
|
66 |
| Model-Name | F1 | Precision | Recall | Accuracy
|
67 |
| ------------- |:-------------| -----| -----| ----|
|
68 |
| helinivan/english-sarcasm-detector | 94.48 | 94.46 | 94.51 | 94.48
|
|
|
69 |
| helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55
|
|
|
1 |
---
|
2 |
+
language: "it"
|
3 |
tags:
|
4 |
- bert
|
5 |
- sarcasm-detection
|
6 |
- text-classification
|
7 |
widget:
|
8 |
+
- text: "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
|
9 |
---
|
10 |
|
11 |
+
# Italian Sarcasm Detector
|
12 |
|
13 |
+
Italian Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on dbmdz/bert-base-italian-uncased and the training data consists of scraped data from Italian non-sarcastic newspaper (Il Giornale) and sarcastic newspaper (Lercio).
|
14 |
|
15 |
## Metrics:
|
16 |
|
17 |
|
18 |
## Training Data
|
19 |
|
|
|
|
|
|
|
|
|
20 |
Scraped data:
|
|
|
21 |
- Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
|
22 |
- Italian sarcastic news from [Lercio]([https://www.lercio.it])
|
23 |
|
|
|
36 |
def preprocess_data(text: str) -> str:
|
37 |
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
|
38 |
|
39 |
+
MODEL_PATH = "helinivan/italian-sarcasm-detector"
|
40 |
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
42 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
43 |
|
44 |
+
text = "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
|
45 |
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
|
46 |
output = model(**tokenized_text)
|
47 |
probs = output.logits.softmax(dim=-1).tolist()[0]
|
|
|
61 |
| Model-Name | F1 | Precision | Recall | Accuracy
|
62 |
| ------------- |:-------------| -----| -----| ----|
|
63 |
| helinivan/english-sarcasm-detector | 94.48 | 94.46 | 94.51 | 94.48
|
64 |
+
| helinivan/italian-sarcasm-detector | 92.99 | 92.77 | 93.24 | 93.42
|
65 |
| helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55
|