helinivan commited on
Commit
9490c26
1 Parent(s): 81d000d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -11
README.md CHANGED
@@ -1,28 +1,23 @@
1
  ---
2
- language: "multilingual"
3
  tags:
4
  - bert
5
  - sarcasm-detection
6
  - text-classification
7
  widget:
8
- - text: "CIA Realizes It's Been Using Black Highlighters All These Years."
9
  ---
10
 
11
- # Multilingual Sarcasm Detector
12
 
13
- Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on bert-multilingual uncased and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian.
14
 
15
  ## Metrics:
16
 
17
 
18
  ## Training Data
19
 
20
- Datasets:
21
- - English language data: [Kaggle: News Headlines Dataset For Sarcasm Detection]([https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detection]).
22
- - Dutch non-sarcastic data: [Kaggle: Dutch News Articles]([https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles])
23
-
24
  Scraped data:
25
- - Dutch sarcastic news from [De Speld]([https://speld.nl])
26
  - Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
27
  - Italian sarcastic news from [Lercio]([https://www.lercio.it])
28
 
@@ -41,12 +36,12 @@ import string
41
  def preprocess_data(text: str) -> str:
42
  return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
43
 
44
- MODEL_PATH = "helinivan/multilingual-sarcasm-detector"
45
 
46
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
47
  model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
48
 
49
- text = "CIA Realizes It's Been Using Black Highlighters All These Years."
50
  tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
51
  output = model(**tokenized_text)
52
  probs = output.logits.softmax(dim=-1).tolist()[0]
@@ -66,4 +61,5 @@ Output:
66
  | Model-Name | F1 | Precision | Recall | Accuracy
67
  | ------------- |:-------------| -----| -----| ----|
68
  | helinivan/english-sarcasm-detector | 94.48 | 94.46 | 94.51 | 94.48
 
69
  | helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55
 
1
  ---
2
+ language: "it"
3
  tags:
4
  - bert
5
  - sarcasm-detection
6
  - text-classification
7
  widget:
8
+ - text: "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
9
  ---
10
 
11
+ # Italian Sarcasm Detector
12
 
13
+ Italian Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on dbmdz/bert-base-italian-uncased and the training data consists of scraped data from Italian non-sarcastic newspaper (Il Giornale) and sarcastic newspaper (Lercio).
14
 
15
  ## Metrics:
16
 
17
 
18
  ## Training Data
19
 
 
 
 
 
20
  Scraped data:
 
21
  - Italian non-sarcastic news from [Il Giornale]([https://www.ilgiornale.it])
22
  - Italian sarcastic news from [Lercio]([https://www.lercio.it])
23
 
 
36
  def preprocess_data(text: str) -> str:
37
  return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
38
 
39
+ MODEL_PATH = "helinivan/italian-sarcasm-detector"
40
 
41
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
42
  model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
43
 
44
+ text = "Auto, stop a diesel e benzina dal 2035. Ecco cosa cambia per i consumatori"
45
  tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=512, return_tensors="pt")
46
  output = model(**tokenized_text)
47
  probs = output.logits.softmax(dim=-1).tolist()[0]
 
61
  | Model-Name | F1 | Precision | Recall | Accuracy
62
  | ------------- |:-------------| -----| -----| ----|
63
  | helinivan/english-sarcasm-detector | 94.48 | 94.46 | 94.51 | 94.48
64
+ | helinivan/italian-sarcasm-detector | 92.99 | 92.77 | 93.24 | 93.42
65
  | helinivan/multilingual-sarcasm-detector | 90.91 | 91.51 | 90.44 | 91.55