Update README.md
Browse files
README.md
CHANGED
@@ -5,14 +5,14 @@ tags:
|
|
5 |
- sarcasm-detection
|
6 |
- text-classification
|
7 |
widget:
|
8 |
-
- text: "
|
9 |
- text: "CIA Realizes It's Been Using Black Highlighters All These Years."
|
10 |
- text: "We deden een man een nacht in een vat met cola en nu is hij dood"
|
11 |
---
|
12 |
|
13 |
# Multilingual Sarcasm Detector
|
14 |
|
15 |
-
Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on [bert-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian.
|
16 |
|
17 |
|
18 |
<b>Labels</b>:
|
@@ -53,7 +53,7 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
|
53 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
54 |
|
55 |
text = "CIA Realizes It's Been Using Black Highlighters All These Years."
|
56 |
-
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=
|
57 |
output = model(**tokenized_text)
|
58 |
probs = output.logits.softmax(dim=-1).tolist()[0]
|
59 |
confidence = max(probs)
|
@@ -65,7 +65,7 @@ results = {"is_sarcastic": prediction, "confidence": confidence}
|
|
65 |
Output:
|
66 |
|
67 |
```
|
68 |
-
{'is_sarcastic': 1, 'confidence': 0.
|
69 |
```
|
70 |
|
71 |
## Performance
|
|
|
5 |
- sarcasm-detection
|
6 |
- text-classification
|
7 |
widget:
|
8 |
+
- text: "Gli Usa a un passo dalla recessione"
|
9 |
- text: "CIA Realizes It's Been Using Black Highlighters All These Years."
|
10 |
- text: "We deden een man een nacht in een vat met cola en nu is hij dood"
|
11 |
---
|
12 |
|
13 |
# Multilingual Sarcasm Detector
|
14 |
|
15 |
+
Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian.
|
16 |
|
17 |
|
18 |
<b>Labels</b>:
|
|
|
53 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
|
54 |
|
55 |
text = "CIA Realizes It's Been Using Black Highlighters All These Years."
|
56 |
+
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=256, return_tensors="pt")
|
57 |
output = model(**tokenized_text)
|
58 |
probs = output.logits.softmax(dim=-1).tolist()[0]
|
59 |
confidence = max(probs)
|
|
|
65 |
Output:
|
66 |
|
67 |
```
|
68 |
+
{'is_sarcastic': 1, 'confidence': 0.9374828934669495}
|
69 |
```
|
70 |
|
71 |
## Performance
|