--- language: "multilingual" tags: - bert - sarcasm-detection - text-classification widget: - text: "Gli Usa a un passo dalla recessione" - text: "CIA Realizes It's Been Using Black Highlighters All These Years." - text: "We deden een man een nacht in een vat met cola en nu is hij dood" --- # Multilingual Sarcasm Detector Multilingual Sarcasm Detector is a text classification model built to detect sarcasm from news article titles. It is fine-tuned on [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) and the training data consists of ready-made datasets available on Kaggle as well scraped data from multiple newspapers in English, Dutch and Italian. Labels: 0 -> Not Sarcastic; 1 -> Sarcastic ## Training Data Datasets: - English language data: [Kaggle: News Headlines Dataset For Sarcasm Detection](https://www.kaggle.com/datasets/rmisra/news-headlines-dataset-for-sarcasm-detection). - Dutch non-sarcastic data: [Kaggle: Dutch News Articles](https://www.kaggle.com/datasets/maxscheijen/dutch-news-articles) Scraped data: - Dutch sarcastic news from [De Speld](https://speld.nl) - Italian non-sarcastic news from [Il Giornale](https://www.ilgiornale.it) - Italian sarcastic news from [Lercio](https://www.lercio.it) Codebase: - Git Repo: [Official repository](https://github.com/helinivan/multilingual-sarcasm-detector) --- ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import string def preprocess_data(text: str) -> str: return text.lower().translate(str.maketrans("", "", string.punctuation)).strip() MODEL_PATH = "helinivan/multilingual-sarcasm-detector" tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH) text = "CIA Realizes It's Been Using Black Highlighters All These Years." tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=256, return_tensors="pt") output = model(**tokenized_text) probs = output.logits.softmax(dim=-1).tolist()[0] confidence = max(probs) prediction = probs.index(confidence) results = {"is_sarcastic": prediction, "confidence": confidence} ``` Output: ``` {'is_sarcastic': 1, 'confidence': 0.9374828934669495} ``` ## Performance | Model-Name | F1 | Precision | Recall | Accuracy | ------------- |:-------------| -----| -----| ----| | [helinivan/english-sarcasm-detector ](https://huggingface.co/helinivan/english-sarcasm-detector)| 92.38 | 92.75 | 92.38 | 92.42 | [helinivan/italian-sarcasm-detector ](https://huggingface.co/helinivan/italian-sarcasm-detector) | 88.26 | 87.66 | 89.66 | 88.69 | [helinivan/multilingual-sarcasm-detector ](https://huggingface.co/helinivan/multilingual-sarcasm-detector) | **87.23** | 88.65 | 86.33 | 88.30 | [helinivan/dutch-sarcasm-detector ](https://huggingface.co/helinivan/dutch-sarcasm-detector) | 83.02 | 84.27 | 82.01 | 86.81