--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-b-16x2-kinetics400-finetuned-ucf101-subset results: [] --- # vivit-b-16x2-kinetics400-finetuned-ucf101-subset This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6545 - Accuracy: 0.8339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 7060 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.1788 | 0.0494 | 349 | 1.1337 | 0.5608 | | 0.93 | 1.0494 | 698 | 1.0407 | 0.6386 | | 0.7623 | 2.0494 | 1047 | 0.8954 | 0.6775 | | 0.6178 | 3.0494 | 1396 | 0.8011 | 0.7050 | | 0.4934 | 4.0494 | 1745 | 0.8328 | 0.7034 | | 0.5447 | 5.0494 | 2094 | 0.7323 | 0.7731 | | 0.4106 | 6.0494 | 2443 | 0.6595 | 0.7763 | | 0.4948 | 7.0494 | 2792 | 0.6986 | 0.7780 | | 0.3257 | 8.0494 | 3141 | 0.5867 | 0.8152 | | 0.2109 | 9.0494 | 3490 | 0.6624 | 0.8039 | | 0.3482 | 10.0494 | 3839 | 0.6958 | 0.8104 | | 0.4104 | 11.0494 | 4188 | 0.5619 | 0.8331 | | 0.2176 | 12.0494 | 4537 | 0.5727 | 0.8217 | | 0.1634 | 13.0494 | 4886 | 0.4984 | 0.8606 | | 0.1256 | 14.0494 | 5235 | 0.5515 | 0.8444 | | 0.188 | 15.0494 | 5584 | 0.5470 | 0.8428 | | 0.2174 | 16.0494 | 5933 | 0.4847 | 0.8590 | | 0.1619 | 17.0494 | 6282 | 0.5030 | 0.8784 | | 0.3518 | 18.0494 | 6631 | 0.4783 | 0.8784 | | 0.1533 | 19.0494 | 6980 | 0.5133 | 0.8703 | | 0.101 | 20.0113 | 7060 | 0.5090 | 0.8703 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.0.1+cu117 - Datasets 2.21.0 - Tokenizers 0.19.1