File size: 1,494 Bytes
8bdcff1
 
 
 
5eee276
 
8bdcff1
 
 
 
 
 
 
 
 
 
 
9a01df9
8bdcff1
9a01df9
 
 
 
 
 
 
 
 
 
 
 
8bdcff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: other
base_model: nvidia/mit-b0
tags:
- image-segmentation
- vision
- generated_from_trainer
model-index:
- name: segformer-finetuned-biofilm_MRCNNv1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-finetuned-biofilm_MRCNNv1

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the heroza/biofilm_MRCNNv1_validation dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.7031
- eval_mean_iou: 0.0
- eval_mean_accuracy: nan
- eval_overall_accuracy: nan
- eval_accuracy_background: nan
- eval_accuracy_biofilm: nan
- eval_iou_background: 0.0
- eval_iou_biofilm: 0.0
- eval_runtime: 144.7654
- eval_samples_per_second: 8.794
- eval_steps_per_second: 1.105
- step: 0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000

### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.14.4
- Tokenizers 0.15.1