--- license: other base_model: nvidia/mit-b0 tags: - image-segmentation - vision - generated_from_trainer model-index: - name: segformer-finetuned-biofilm_MRCNNv1 results: [] --- # segformer-finetuned-biofilm_MRCNNv1 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the heroza/biofilm_MRCNNv1_validation dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7031 - eval_mean_iou: 0.0 - eval_mean_accuracy: nan - eval_overall_accuracy: nan - eval_accuracy_background: nan - eval_accuracy_biofilm: nan - eval_iou_background: 0.0 - eval_iou_biofilm: 0.0 - eval_runtime: 144.7654 - eval_samples_per_second: 8.794 - eval_steps_per_second: 1.105 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - training_steps: 10000 ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1