herpaderpapotato
commited on
Commit
·
c4bd4b0
1
Parent(s):
cff09c6
Create initial_model_creation.py
Browse files- initial_model_creation.py +43 -0
initial_model_creation.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
policy = tf.keras.mixed_precision.Policy("mixed_float16")
|
3 |
+
tf.keras.mixed_precision.set_global_policy(policy)
|
4 |
+
from tensorflow import keras
|
5 |
+
from tensorflow.keras import layers
|
6 |
+
from keras_cv_attention_models import efficientnet
|
7 |
+
|
8 |
+
input_shape = (image_frames, None, None, 3)
|
9 |
+
image_frames = 60
|
10 |
+
image_size = 384
|
11 |
+
|
12 |
+
backbone_path = 'efficientnetv2-s-21k-ft1k.h5'
|
13 |
+
backbone = efficientnet.EfficientNetV2S(pretrained=backbone_path,dropout=1e-6, num_classes=0, include_preprocessing = True)
|
14 |
+
backbone.summary()
|
15 |
+
backbone.trainable = False
|
16 |
+
|
17 |
+
inputs = keras.Input(shape=input_shape)
|
18 |
+
backbone_inputs = keras.Input(shape=(None, None, 3))
|
19 |
+
y = backbone(backbone_inputs)
|
20 |
+
y = layers.Flatten()(y)
|
21 |
+
y = layers.Dense(32, activation="relu")(y)
|
22 |
+
y = layers.Dropout(0.1)(y)
|
23 |
+
x = layers.TimeDistributed(keras.Model(backbone_inputs, y))(inputs)
|
24 |
+
x = layers.Dropout(0.1)(x)
|
25 |
+
x = layers.LSTM(128, return_sequences=True)(x)
|
26 |
+
x = layers.Dropout(0.1)(x)
|
27 |
+
x = layers.LSTM(128, return_sequences=False)(x)
|
28 |
+
x = layers.Dropout(0.1)(x)
|
29 |
+
x = layers.Dense(128, activation="relu")(x)
|
30 |
+
x = layers.Dropout(0.1)(x)
|
31 |
+
x = layers.Dense(64, activation="relu")(x)
|
32 |
+
x = layers.Dropout(0.1)(x)
|
33 |
+
x = layers.Dense(48, activation="relu")(x)
|
34 |
+
x = layers.Dropout(0.1)(x)
|
35 |
+
x = layers.Dense(32, activation="relu")(x)
|
36 |
+
x = layers.Dropout(0.1)(x)
|
37 |
+
outputs = layers.Dense(9, activation="relu")(x)
|
38 |
+
model = keras.Model(inputs, outputs)
|
39 |
+
model.compile(
|
40 |
+
optimizer=keras.optimizers.Adam(1e-3),
|
41 |
+
loss="mean_squared_error",
|
42 |
+
metrics=["mean_squared_error", "mean_absolute_error"]
|
43 |
+
)
|