Text-to-Speech
ONNX
English
File size: 6,268 Bytes
3767727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d53ec79
 
 
 
 
3767727
 
d53ec79
3767727
 
 
 
 
 
d53ec79
 
3767727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d53ec79
 
3767727
 
 
 
 
 
 
 
 
d53ec79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import phonemizer
import re
import torch

def split_num(num):
    num = num.group()
    if '.' in num:
        return num
    elif ':' in num:
        h, m = [int(n) for n in num.split(':')]
        if m == 0:
            return f"{h} o'clock"
        elif m < 10:
            return f'{h} oh {m}'
        return f'{h} {m}'
    year = int(num[:4])
    if year < 1100 or year % 1000 < 10:
        return num
    left, right = num[:2], int(num[2:4])
    s = 's' if num.endswith('s') else ''
    if 100 <= year % 1000 <= 999:
        if right == 0:
            return f'{left} hundred{s}'
        elif right < 10:
            return f'{left} oh {right}{s}'
    return f'{left} {right}{s}'

def flip_money(m):
    m = m.group()
    bill = 'dollar' if m[0] == '$' else 'pound'
    if m[-1].isalpha():
        return f'{m[1:]} {bill}s'
    elif '.' not in m:
        s = '' if m[1:] == '1' else 's'
        return f'{m[1:]} {bill}{s}'
    b, c = m[1:].split('.')
    s = '' if b == '1' else 's'
    c = int(c.ljust(2, '0'))
    coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
    return f'{b} {bill}{s} and {c} {coins}'

def point_num(num):
    a, b = num.group().split('.')
    return ' point '.join([a, ' '.join(b)])

def normalize_text(text):
    text = text.replace(chr(8216), "'").replace(chr(8217), "'")
    text = text.replace('«', chr(8220)).replace('»', chr(8221))
    text = text.replace(chr(8220), '"').replace(chr(8221), '"')
    text = text.replace('(', '«').replace(')', '»')
    for a, b in zip('、。!,:;?', ',.!,:;?'):
        text = text.replace(a, b+' ')
    text = re.sub(r'[^\S \n]', ' ', text)
    text = re.sub(r'  +', ' ', text)
    text = re.sub(r'(?<=\n) +(?=\n)', '', text)
    text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
    text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
    text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
    text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
    text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
    text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
    text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
    text = re.sub(r'(?<=\d),(?=\d)', '', text)
    text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
    text = re.sub(r'\d*\.\d+', point_num, text)
    text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
    text = re.sub(r'(?<=\d)S', ' S', text)
    text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
    text = re.sub(r"(?<=X')S\b", 's', text)
    text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
    text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
    return text.strip()

def get_vocab():
    _pad = "$"
    _punctuation = ';:,.!?¡¿—…"«»“” '
    _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
    _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
    symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
    dicts = {}
    for i in range(len((symbols))):
        dicts[symbols[i]] = i
    return dicts

VOCAB = get_vocab()
def tokenize(ps):
    return [i for i in map(VOCAB.get, ps) if i is not None]

phonemizers = dict(
    a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
    b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
)
def phonemize(text, lang, norm=True):
    if norm:
        text = normalize_text(text)
    ps = phonemizers[lang].phonemize([text])
    ps = ps[0] if ps else ''
    # https://en.wiktionary.org/wiki/kokoro#English
    ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
    ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
    ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
    ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
    if lang == 'a':
        ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
    ps = ''.join(filter(lambda p: p in VOCAB, ps))
    return ps.strip()

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

@torch.no_grad()
def forward(model, tokens, ref_s, speed):
    device = ref_s.device
    tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
    input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
    text_mask = length_to_mask(input_lengths).to(device)
    bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
    d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
    s = ref_s[:, 128:]
    d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
    x, _ = model.predictor.lstm(d)
    duration = model.predictor.duration_proj(x)
    duration = torch.sigmoid(duration).sum(axis=-1) / speed
    pred_dur = torch.round(duration).clamp(min=1).long()
    pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
    c_frame = 0
    for i in range(pred_aln_trg.size(0)):
        pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
        c_frame += pred_dur[0,i].item()
    en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
    F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
    t_en = model.text_encoder(tokens, input_lengths, text_mask)
    asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
    return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()

def generate(model, text, voicepack, lang='a', speed=1):
    ps = phonemize(text, lang)
    tokens = tokenize(ps)
    if not tokens:
        return None
    elif len(tokens) > 510:
        tokens = tokens[:510]
        print('Truncated to 510 tokens')
    ref_s = voicepack[len(tokens)]
    out = forward(model, tokens, ref_s, speed)
    ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
    return out, ps