heydariAI commited on
Commit
45616c6
1 Parent(s): b8f0480

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -53
README.md CHANGED
@@ -70,56 +70,3 @@ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ahdsoft/persian-sentence-transformer-news-wiki-pairs-v3)
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 17122 with parameters:
89
- ```
90
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
96
- ```
97
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
98
- ```
99
-
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 3,
104
- "evaluation_steps": 4250,
105
- "evaluator": "__main__.LossEvaluator",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": null,
113
- "warmup_steps": 5137,
114
- "weight_decay": 0.01
115
- }
116
- ```
117
-
118
-
119
- ## Full Model Architecture
120
- ```
121
- SentenceTransformer(
122
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
123
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
124
- )
125
- ```
 
70
  print("Sentence embeddings:")
71
  print(sentence_embeddings)
72
  ```