File size: 6,009 Bytes
2ddc8fa
c40cf9a
 
 
beeab17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ddc8fa
27d4a08
 
 
 
 
557b5cb
b1cdccc
52f667e
 
 
 
4b2e637
52f667e
 
 
 
4b2e637
52f667e
 
 
 
27d4a08
 
 
6d94b5a
 
 
 
 
 
 
4b2e637
6d94b5a
beeab17
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
language:
- zh
- en
license: apache-2.0
model-index:
- name: chinese-llama-2-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 44.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 69.5
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 37.47
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 37.0
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 68.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.44
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ziqingyang/chinese-llama-2-7b
      name: Open LLM Leaderboard
---

# Chinese-LLaMA-2-7B

**This is the full Chinese-LLaMA-2-7B model,which can be loaded directly for inference and full-parameter training.**

**Related models👇**
* Long context base models
  * [Chinese-LLaMA-2-7B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-7b-16k)
  * [Chinese-LLaMA-2-LoRA-7B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b-16k)
  * [Chinese-LLaMA-2-13B-16K (full model)](https://huggingface.co/hfl/chinese-llama-2-13b-16k)
  * [Chinese-LLaMA-2-LoRA-13B-16K (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b-16k)
* Base models
  * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/hfl/chinese-llama-2-7b)
  * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-7b)
  * [Chinese-LLaMA-2-13B (full model)](https://huggingface.co/hfl/chinese-llama-2-13b)
  * [Chinese-LLaMA-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-llama-2-lora-13b)
* Instruction/Chat models
  * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-7b)
  * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-7b)
  * [Chinese-Alpaca-2-13B (full model)](https://huggingface.co/hfl/chinese-alpaca-2-13b)
  * [Chinese-Alpaca-2-LoRA-13B (LoRA model)](https://huggingface.co/hfl/chinese-alpaca-2-lora-13b)


# Description of Chinese-LLaMA-Alpaca-2 
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.

The main contents of this project include:

* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.

Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ziqingyang__chinese-llama-2-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |43.14|
|AI2 Reasoning Challenge (25-Shot)|44.45|
|HellaSwag (10-Shot)              |69.50|
|MMLU (5-Shot)                    |37.47|
|TruthfulQA (0-shot)              |37.00|
|Winogrande (5-shot)              |68.98|
|GSM8k (5-shot)                   | 1.44|