---
library_name: transformers
tags:
- text-generation-inference
- transformers
- unsloth
- trl
- llama
language:
- en
base_model: meta-llama/Meta-Llama-3-8B-Instruct
---
## Model Description
This model was fine-tuned on meta-llama/Meta-Llama-3-8B-Instruct for function calling and json mode.
## Usage
### JSON Mode
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "hiieu/Meta-Llama-3-8B-Instruct-function-calling-json-mode"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful assistant, answer in JSON with key \"message\""},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# >> {"message": "I am a helpful assistant, with access to a vast amount of information. I can help you with tasks such as answering questions, providing definitions, translating text, and more. Feel free to ask me anything!"}
```
### Function Calling
Function calling requires two step inferences, below is the example:
## Step 1:
```python
functions_metadata = [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "get temperature of a city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "name"
}
},
"required": [
"city"
]
}
}
}
]
messages = [
{ "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} \n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""},
{ "role": "user", "content": "What is the temperature in Tokyo right now?"}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# >> {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} """}
```
## Step 2:
```python
messages = [
{ "role": "system", "content": f"""You are a helpful assistant with access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} \n\nEdge cases you must handle:\n - If there are no functions that match the user request, you will respond politely that you cannot help."""},
{ "role": "user", "content": "What is the temperature in Tokyo right now?"},
# You will get the previous prediction, extract it will the tag
# execute the function and append it to the messages like below:
{ "role": "assistant", "content": """ {"name": "get_temperature", "arguments": '{"city": "Tokyo"}'} """},
{ "role": "user", "content": """ {"temperature":30 C} """}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# >> The current temperature in Tokyo is 30 degrees Celsius.
```
# Uploaded model
- **Developed by:** hiieu
This model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[](https://github.com/unslothai/unsloth)