--- language: - tr license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - a metrics: - wer model-index: - name: Whisper large tr - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: a type: a config: default split: test args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 100.0 --- # Whisper large tr - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the a dataset. It achieves the following results on the evaluation set: - Loss: 5.1507 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 5.6231 | 1.0 | 2 | 5.4697 | 100.0 | | 5.3829 | 2.0 | 4 | 5.1507 | 100.0 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0