himanshu23099 commited on
Commit
6bdbfa5
1 Parent(s): ede793b

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@5
7
+ - cosine_accuracy@10
8
+ - cosine_precision@1
9
+ - cosine_precision@5
10
+ - cosine_precision@10
11
+ - cosine_recall@1
12
+ - cosine_recall@5
13
+ - cosine_recall@10
14
+ - cosine_ndcg@5
15
+ - cosine_ndcg@10
16
+ - cosine_ndcg@100
17
+ - cosine_mrr@5
18
+ - cosine_mrr@10
19
+ - cosine_mrr@100
20
+ - cosine_map@100
21
+ - dot_accuracy@1
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@5
26
+ - dot_precision@10
27
+ - dot_recall@1
28
+ - dot_recall@5
29
+ - dot_recall@10
30
+ - dot_ndcg@5
31
+ - dot_ndcg@10
32
+ - dot_ndcg@100
33
+ - dot_mrr@5
34
+ - dot_mrr@10
35
+ - dot_mrr@100
36
+ - dot_map@100
37
+ pipeline_tag: sentence-similarity
38
+ tags:
39
+ - sentence-transformers
40
+ - sentence-similarity
41
+ - feature-extraction
42
+ - generated_from_trainer
43
+ - dataset_size:1606
44
+ - loss:GISTEmbedLoss
45
+ widget:
46
+ - source_sentence: Do the tours include visits to all the major ghats and Akhara camps?
47
+ sentences:
48
+ - Yes, many tours do cover all major ghats such as Sangam, Ram Ghat, and Dashashwamedh
49
+ Ghat, along with visits to some of the most significant Akhara camps. These tours
50
+ offer pilgrims a unique opportunity to witness the religious and cultural significance
51
+ of these locations. However, we recommend reviewing the specific itinerary of
52
+ your chosen tour for precise details.
53
+ - Yes, many tours do cover all major ghats such as Sangam, Ram Ghat, and Dashashwamedh
54
+ Ghat, along with visits to some of the most significant Akhara camps. These tours
55
+ offer pilgrims a unique opportunity to witness the religious and cultural significance
56
+ of these locations. However, we recommend reviewing the specific itinerary of
57
+ your chosen tour for precise details.
58
+ - The orchestra rehearsed late into the night, perfecting their performance for
59
+ the upcoming concert. Each musician contributed their unique sound, creating a
60
+ harmonious blend of instruments. The conductor insisted on precision and emotion,
61
+ ensuring every note resonated with the audience's heart. Attendees can expect
62
+ a captivating experience, filled with dynamic melodies and intricate crescendos
63
+ that highlight the orchestra's talent and dedication. For a firsthand experience,
64
+ consider arriving early to enjoy the pre-concert discussions.
65
+ - source_sentence: What is the significance of the Naga Sadhus in the Shahi Snan?
66
+ sentences:
67
+ - The Naga Sadhus hold a significant place in the Shahi Snan during the Kumbh Mela
68
+ as they are considered the guardians of faith and ancient traditions within Hinduism.
69
+ Known for their ash-covered, unclothed bodies, long matted hair, and intense spiritual
70
+ practices, the Naga Sadhus are the first to take the holy dip during the Shahi
71
+ Snan, symbolizing purity, renunciation, and spiritual strength. Their participation
72
+ is believed to purify the waters of the sacred rivers, making them spiritually
73
+ potent for the millions of pilgrims who follow. The Naga Sadhus’ procession to
74
+ the river, marked by their vibrant chants, tridents, and fearless demeanor, is
75
+ one of the most awe-inspiring spectacles of the Kumbh Mela. Their presence represents
76
+ the commitment to asceticism, devotion, and the protection of religious traditions,
77
+ adding a deeper layer of spiritual intensity and significance to the Shahi Snan
78
+ ritual.
79
+ - During the processions of Peshwai and Shahi Snaans at the Maha Kumbh Mela, Mahamandaleshwaras
80
+ play a unique and central role as the spiritual leaders of their Akharas. They
81
+ lead their followers in grand, royal processions to the riverbanks for the Shahi
82
+ Snan (royal bath), symbolizing the beginning of the holy ritual. Riding on beautifully
83
+ decorated chariots, elephants, or horses, they lead the march with great reverence
84
+ and authority, followed by their disciples, saints, and devotees. The presence
85
+ of Mahamandaleshwaras in these processions signifies the spiritual sanctity and
86
+ importance of the ritual, inspiring pilgrims to partake in the spiritual energy
87
+ and blessings of the holy dip. Their leadership adds a sense of grandeur and divine
88
+ significance to the Shahi Snaans, making them the focal point of the Kumbh Mela.
89
+ - The vibrant world of reptiles is fascinating to explore, particularly focusing
90
+ on the unique adaptations they possess for survival. Snakes, for instance, exhibit
91
+ remarkable methods of locomotion, allowing them to navigate diverse terrains with
92
+ ease. Some species are known for their ability to blend into their surroundings,
93
+ employing camouflage techniques that render them nearly invisible to both predators
94
+ and prey. Additionally, many reptiles display fascinating reproductive behaviors,
95
+ with some laying eggs in protected environments while others give birth to live
96
+ young. The intricate ecosystems that support these creatures highlight the interdependence
97
+ between various species, illustrating the delicate balance of nature. Understanding
98
+ these dynamics can enhance our appreciation for the biodiversity that exists in
99
+ our world and the intricate roles each species plays within its habitat.
100
+ - source_sentence: Are there any carpool or ride-sharing options to travel to Prayagraj?
101
+ sentences:
102
+ - 'In the realm of culinary experiences, exploring the myriad flavors of Italian
103
+ cuisine can be quite delightful. One might consider the following aspects:<br><br>1.
104
+ Pasta Varieties: There are numerous types of pasta, from spaghetti to fettuccine,
105
+ each offering a distinct texture and taste in dishes.<br>2. Regional Sauces: Different
106
+ areas of Italy are known for unique sauces, such as marinara, pesto, and Alfredo,
107
+ which can transform a simple meal into a feast. Additionally, using fresh, local
108
+ ingredients enhances the flavors.<br>3. Dining Etiquette: Understanding Italian
109
+ dining customs, such as the significance of antipasti, can enrich one''s experience
110
+ while enjoying meals with family and friends.'
111
+ - 'Yes, there are multiple carpooling and ride-sharing options you can use to travel
112
+ to Prayagraj. These include:<br><br>1. BlaBlaCar: This is a trusted community
113
+ carpooling app where you can connect with people who are traveling in the same
114
+ direction.<br>2. Uber and Ola Share: Both Uber and Ola offer ride-sharing options
115
+ where you can share your ride with other passengers. Please note this might depend
116
+ on the city you are traveling from.<br>3. Local Carpooling groups: There may be
117
+ local carpooling groups on social media platforms like Facebook and WhatsApp where
118
+ people share their travel plans.'
119
+ - The Kumbh Mela hosts a diverse array of spiritual gurus, each representing different
120
+ spiritual traditions and philosophies within Hinduism. Prominent among them are
121
+ the Mahamandaleshwaras of the various Akharas, who are highly respected for their
122
+ deep knowledge of scriptures and spiritual leadership. Then there are the Naga
123
+ Sadhus, known for their ascetic lifestyle and unique appearance, who represent
124
+ intense spiritual discipline and renunciation. \n \n The Acharyas and Prayagwals
125
+ serve as guides and teachers for pilgrims, offering religious services and performing
126
+ important rituals like Pind Daan and Shraadh. Additionally, there are Dandi Sanyasis
127
+ who follow the path of austerity and renunciation, emphasizing self-discipline
128
+ and simplicity.
129
+ - source_sentence: What is the best train route to Prayagraj from Varanasi?
130
+ sentences:
131
+ - The best train route from Varanasi to Prayagraj is via the Indian Railways. There
132
+ are multiple trains that operate on this route daily. <br><br>1. VBS BSB Express
133
+ (14235)<br>2. Shiv Ganga Express (12559)<br>3. Mahanagri Express (11093)<br>4.
134
+ Kashi Vishwanath Express (14257)<br>5. Vande Bharat <br><br>For the most accurate
135
+ and up-to-date information on train timings to Prayagraj, please visit the IRCTC
136
+ website <<u><a target='_blank' href='https://www.irctc.co.in/nget/'>https://www.irctc.co.in/nget/</a></u>>
137
+ - Yes, towing services are available if your vehicle breaks down in the parking
138
+ lot.
139
+ - A delightful assortment of pastries can significantly enhance any gathering. Chocolate
140
+ eclairs, fruit tarts, and macarons are popular choices among guests. <br><br>1.
141
+ Lemon meringue tart<br>2. Almond croissant<br>3. Raspberry mille-feuille<br>4.
142
+ Vanilla cream puff<br>5. Caramel flan <br><br>For an exquisite culinary experience,
143
+ consider attending a pastry-making workshop for hands-on learning and tips from
144
+ skilled bakers.
145
+ - source_sentence: What does Deep Daan symbolize?
146
+ sentences:
147
+ - In the quiet corners of a bustling city, the sound of a distant siren punctuates
148
+ the air, hinting at life’s unpredictability. A lone musician sets up his stand,
149
+ strings resonating softly as pedestrians pass by, each lost in their own thoughts.
150
+ The warmth of the sun flows over the pavement, while children chase after colorful
151
+ kites soaring high above. Nearby, a group gathers for laughter and stories, each
152
+ voice woven into a tapestry of community and connection. As day turns to dusk,
153
+ the sky transforms into a palette of vibrant colors, inviting dreams and possibilities
154
+ under the expansive canvas of the universe.
155
+ - Deep Daan involves the ritual of lighting oil lamps (diyas) and floating them
156
+ on the river as an offering to the divine. This act symbolizes the removal of
157
+ darkness and ignorance, representing the soul’s journey towards enlightenment
158
+ and spiritual awakening. The flickering lamps also signify hope, devotion, and
159
+ a wish for divine blessings. During the Kumbh Mela, Deep Daan is considered a
160
+ powerful ritual that purifies the mind and soul, bringing peace and fulfillment
161
+ to the devotees performing it.
162
+ - The duration of the tours typically ranges from 1-day to 3-day packages. Start
163
+ times for the tours are usually early in the morning to ensure participants make
164
+ the most of the day’s activities, which may include attending religious rituals,
165
+ visiting temples, and sightseeing. Exact timings will be communicated to you once
166
+ your booking is confirmed.
167
+ model-index:
168
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
169
+ results:
170
+ - task:
171
+ type: information-retrieval
172
+ name: Information Retrieval
173
+ dataset:
174
+ name: val evaluator
175
+ type: val_evaluator
176
+ metrics:
177
+ - type: cosine_accuracy@1
178
+ value: 0.5621890547263682
179
+ name: Cosine Accuracy@1
180
+ - type: cosine_accuracy@5
181
+ value: 0.9328358208955224
182
+ name: Cosine Accuracy@5
183
+ - type: cosine_accuracy@10
184
+ value: 0.9676616915422885
185
+ name: Cosine Accuracy@10
186
+ - type: cosine_precision@1
187
+ value: 0.5621890547263682
188
+ name: Cosine Precision@1
189
+ - type: cosine_precision@5
190
+ value: 0.1865671641791045
191
+ name: Cosine Precision@5
192
+ - type: cosine_precision@10
193
+ value: 0.09676616915422885
194
+ name: Cosine Precision@10
195
+ - type: cosine_recall@1
196
+ value: 0.5621890547263682
197
+ name: Cosine Recall@1
198
+ - type: cosine_recall@5
199
+ value: 0.9328358208955224
200
+ name: Cosine Recall@5
201
+ - type: cosine_recall@10
202
+ value: 0.9676616915422885
203
+ name: Cosine Recall@10
204
+ - type: cosine_ndcg@5
205
+ value: 0.7755192663647908
206
+ name: Cosine Ndcg@5
207
+ - type: cosine_ndcg@10
208
+ value: 0.7872765799335859
209
+ name: Cosine Ndcg@10
210
+ - type: cosine_ndcg@100
211
+ value: 0.7949599458501615
212
+ name: Cosine Ndcg@100
213
+ - type: cosine_mrr@5
214
+ value: 0.7216832504145936
215
+ name: Cosine Mrr@5
216
+ - type: cosine_mrr@10
217
+ value: 0.726826186527679
218
+ name: Cosine Mrr@10
219
+ - type: cosine_mrr@100
220
+ value: 0.7287172339895628
221
+ name: Cosine Mrr@100
222
+ - type: cosine_map@100
223
+ value: 0.7287172339895628
224
+ name: Cosine Map@100
225
+ - type: dot_accuracy@1
226
+ value: 0.5621890547263682
227
+ name: Dot Accuracy@1
228
+ - type: dot_accuracy@5
229
+ value: 0.9353233830845771
230
+ name: Dot Accuracy@5
231
+ - type: dot_accuracy@10
232
+ value: 0.9676616915422885
233
+ name: Dot Accuracy@10
234
+ - type: dot_precision@1
235
+ value: 0.5621890547263682
236
+ name: Dot Precision@1
237
+ - type: dot_precision@5
238
+ value: 0.1870646766169154
239
+ name: Dot Precision@5
240
+ - type: dot_precision@10
241
+ value: 0.09676616915422885
242
+ name: Dot Precision@10
243
+ - type: dot_recall@1
244
+ value: 0.5621890547263682
245
+ name: Dot Recall@1
246
+ - type: dot_recall@5
247
+ value: 0.9353233830845771
248
+ name: Dot Recall@5
249
+ - type: dot_recall@10
250
+ value: 0.9676616915422885
251
+ name: Dot Recall@10
252
+ - type: dot_ndcg@5
253
+ value: 0.776654033153749
254
+ name: Dot Ndcg@5
255
+ - type: dot_ndcg@10
256
+ value: 0.7875252591924246
257
+ name: Dot Ndcg@10
258
+ - type: dot_ndcg@100
259
+ value: 0.795208625109
260
+ name: Dot Ndcg@100
261
+ - type: dot_mrr@5
262
+ value: 0.7223880597014923
263
+ name: Dot Mrr@5
264
+ - type: dot_mrr@10
265
+ value: 0.7271164021164023
266
+ name: Dot Mrr@10
267
+ - type: dot_mrr@100
268
+ value: 0.7290074495782858
269
+ name: Dot Mrr@100
270
+ - type: dot_map@100
271
+ value: 0.7290074495782857
272
+ name: Dot Map@100
273
+ ---
274
+
275
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
276
+
277
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
278
+
279
+ ## Model Details
280
+
281
+ ### Model Description
282
+ - **Model Type:** Sentence Transformer
283
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
284
+ - **Maximum Sequence Length:** 512 tokens
285
+ - **Output Dimensionality:** 384 tokens
286
+ - **Similarity Function:** Cosine Similarity
287
+ <!-- - **Training Dataset:** Unknown -->
288
+ <!-- - **Language:** Unknown -->
289
+ <!-- - **License:** Unknown -->
290
+
291
+ ### Model Sources
292
+
293
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
294
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
295
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
296
+
297
+ ### Full Model Architecture
298
+
299
+ ```
300
+ SentenceTransformer(
301
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
302
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
303
+ (2): Normalize()
304
+ )
305
+ ```
306
+
307
+ ## Usage
308
+
309
+ ### Direct Usage (Sentence Transformers)
310
+
311
+ First install the Sentence Transformers library:
312
+
313
+ ```bash
314
+ pip install -U sentence-transformers
315
+ ```
316
+
317
+ Then you can load this model and run inference.
318
+ ```python
319
+ from sentence_transformers import SentenceTransformer
320
+
321
+ # Download from the 🤗 Hub
322
+ model = SentenceTransformer("himanshu23099/bge_embedding_finetune1")
323
+ # Run inference
324
+ sentences = [
325
+ 'What does Deep Daan symbolize?',
326
+ 'Deep Daan involves the ritual of lighting oil lamps (diyas) and floating them on the river as an offering to the divine. This act symbolizes the removal of darkness and ignorance, representing the soul’s journey towards enlightenment and spiritual awakening. The flickering lamps also signify hope, devotion, and a wish for divine blessings. During the Kumbh Mela, Deep Daan is considered a powerful ritual that purifies the mind and soul, bringing peace and fulfillment to the devotees performing it.',
327
+ 'In the quiet corners of a bustling city, the sound of a distant siren punctuates the air, hinting at life’s unpredictability. A lone musician sets up his stand, strings resonating softly as pedestrians pass by, each lost in their own thoughts. The warmth of the sun flows over the pavement, while children chase after colorful kites soaring high above. Nearby, a group gathers for laughter and stories, each voice woven into a tapestry of community and connection. As day turns to dusk, the sky transforms into a palette of vibrant colors, inviting dreams and possibilities under the expansive canvas of the universe.',
328
+ ]
329
+ embeddings = model.encode(sentences)
330
+ print(embeddings.shape)
331
+ # [3, 384]
332
+
333
+ # Get the similarity scores for the embeddings
334
+ similarities = model.similarity(embeddings, embeddings)
335
+ print(similarities.shape)
336
+ # [3, 3]
337
+ ```
338
+
339
+ <!--
340
+ ### Direct Usage (Transformers)
341
+
342
+ <details><summary>Click to see the direct usage in Transformers</summary>
343
+
344
+ </details>
345
+ -->
346
+
347
+ <!--
348
+ ### Downstream Usage (Sentence Transformers)
349
+
350
+ You can finetune this model on your own dataset.
351
+
352
+ <details><summary>Click to expand</summary>
353
+
354
+ </details>
355
+ -->
356
+
357
+ <!--
358
+ ### Out-of-Scope Use
359
+
360
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
361
+ -->
362
+
363
+ ## Evaluation
364
+
365
+ ### Metrics
366
+
367
+ #### Information Retrieval
368
+ * Dataset: `val_evaluator`
369
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
370
+
371
+ | Metric | Value |
372
+ |:--------------------|:----------|
373
+ | cosine_accuracy@1 | 0.5622 |
374
+ | cosine_accuracy@5 | 0.9328 |
375
+ | cosine_accuracy@10 | 0.9677 |
376
+ | cosine_precision@1 | 0.5622 |
377
+ | cosine_precision@5 | 0.1866 |
378
+ | cosine_precision@10 | 0.0968 |
379
+ | cosine_recall@1 | 0.5622 |
380
+ | cosine_recall@5 | 0.9328 |
381
+ | cosine_recall@10 | 0.9677 |
382
+ | cosine_ndcg@5 | 0.7755 |
383
+ | cosine_ndcg@10 | 0.7873 |
384
+ | cosine_ndcg@100 | 0.795 |
385
+ | cosine_mrr@5 | 0.7217 |
386
+ | cosine_mrr@10 | 0.7268 |
387
+ | cosine_mrr@100 | 0.7287 |
388
+ | cosine_map@100 | 0.7287 |
389
+ | dot_accuracy@1 | 0.5622 |
390
+ | dot_accuracy@5 | 0.9353 |
391
+ | dot_accuracy@10 | 0.9677 |
392
+ | dot_precision@1 | 0.5622 |
393
+ | dot_precision@5 | 0.1871 |
394
+ | dot_precision@10 | 0.0968 |
395
+ | dot_recall@1 | 0.5622 |
396
+ | dot_recall@5 | 0.9353 |
397
+ | dot_recall@10 | 0.9677 |
398
+ | dot_ndcg@5 | 0.7767 |
399
+ | dot_ndcg@10 | 0.7875 |
400
+ | dot_ndcg@100 | 0.7952 |
401
+ | dot_mrr@5 | 0.7224 |
402
+ | dot_mrr@10 | 0.7271 |
403
+ | dot_mrr@100 | 0.729 |
404
+ | **dot_map@100** | **0.729** |
405
+
406
+ <!--
407
+ ## Bias, Risks and Limitations
408
+
409
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
410
+ -->
411
+
412
+ <!--
413
+ ### Recommendations
414
+
415
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
416
+ -->
417
+
418
+ ## Training Details
419
+
420
+ ### Training Dataset
421
+
422
+ #### Unnamed Dataset
423
+
424
+
425
+ * Size: 1,606 training samples
426
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
427
+ * Approximate statistics based on the first 1000 samples:
428
+ | | anchor | positive | negative |
429
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
430
+ | type | string | string | string |
431
+ | details | <ul><li>min: 8 tokens</li><li>mean: 18.11 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 110.54 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 114.86 tokens</li><li>max: 424 tokens</li></ul> |
432
+ * Samples:
433
+ | anchor | positive | negative |
434
+ |:--------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
435
+ | <code>Why should one do the Prayagraj Panchkoshi Parikrama?</code> | <code>The Prayagraj Panchkoshi Parikrama is a deeply revered spiritual journey that offers multiple benefits to devotees. It is believed to grant blessings equivalent to visiting all sacred pilgrimage sites in India, providing divine grace and spiritual merit. The Parikrama route covers significant temples like the Dwadash Madhav temples, Akshayavat, and Mankameshwar, which are steeped in Hindu mythology and history, allowing pilgrims to connect with the spiritual and cultural heritage of Prayagraj. This circumambulation around sacred sites is also seen as a way to cleanse one's sins and progress towards Moksha (liberation from the cycle of birth and rebirth), making it a path of introspection and spiritual growth. The pilgrimage fosters unity among people from diverse backgrounds, offering a unique cultural exchange and shared spiritual experience. By participating, devotees also help revive an ancient tradition integral to the Kumbh Mela for centuries, reconnecting with age-old practices that have shaped the region's spiritual landscape. The Prayagraj Panchkoshi Parikrama is a profound journey of faith and devotion, enriching the spiritual lives of those who undertake it.</code> | <code>Elevators are remarkable inventions that revolutionized how we navigate tall buildings. They provide a swift, efficient means of transportation between floors, making urban life more accessible. These mechanical wonders operate on a system of pulleys and counterweights, enabling them to carry heavy loads effortlessly. Safety features like emergency brakes and backup power systems ensure that passengers remain secure during their journey. Various designs and styles can be seen in buildings around the world, from sleek modern glass models to vintage models that evoke nostalgia. Elevators also highlight the advancement of engineering and technology over time, evolving from rudimentary designs to sophisticated machines with smart technology. They are essential in various settings, including residential, commercial, and industrial spaces, offering convenience and practicality. Their presence also allows for the efficient use of vertical space, fostering creativity in architectural designs and city planning. Overall, elevators have become an essential part of contemporary infrastructure, enhancing the way we live and work.</code> |
436
+ | <code>Can I hire an E-Rickshaw for a specific duration or multiple stops within the Mela?</code> | <code>Yes, E-Rickshaws have designated pick-up points, and you can hire them for a specific duration or multiple stops depending on your needs and arrangements with the driver</code> | <code>The process of assigning roles in a theatrical production often involves extensive auditions and interviews. Each candidate brings unique skills, and the director must carefully consider how their abilities will fit into the overall vision for the performance. Team dynamics play a crucial role, as collaboration is essential for a successful show.</code> |
437
+ | <code>What are the best routes to avoid traffic while traveling from Prayagraj Junction to the Mela grounds?</code> | <code>The distance between Prayagraj Junction and the Mela Grounds during the Kumbh Mela in Prayagraj, India is approximately 5-7 kilometers. By bus, this could take anywhere from 20-40 minutes, depending on traffic and the specific route.</code> | <code>The ancient art of glassblowing has captivated artisans for centuries. Bubbles of molten glass are deftly shaped into exquisite forms, revealing the synergy between fire and craftsmanship. The process requires both skill and creativity, resulting in functional pieces or striking sculptures that bring vibrancy to any space. Each creation is unique, echoing the delicate dance of temperature and technique involved in the art form.</code> |
438
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
439
+ ```json
440
+ {'guide': SentenceTransformer(
441
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
442
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
443
+ (2): Normalize()
444
+ ), 'temperature': 0.01}
445
+ ```
446
+
447
+ ### Evaluation Dataset
448
+
449
+ #### Unnamed Dataset
450
+
451
+
452
+ * Size: 402 evaluation samples
453
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
454
+ * Approximate statistics based on the first 402 samples:
455
+ | | anchor | positive | negative |
456
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
457
+ | type | string | string | string |
458
+ | details | <ul><li>min: 8 tokens</li><li>mean: 17.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 111.36 tokens</li><li>max: 471 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 116.68 tokens</li><li>max: 501 tokens</li></ul> |
459
+ * Samples:
460
+ | anchor | positive | negative |
461
+ |:----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
462
+ | <code>What is the Female Helpline number?</code> | <code>The Women and Child Helpline number for assistance during the Maha Kumbh 2025 is 1091. This service is available for any support related to the safety and well-being of women and children.</code> | <code>The average lifespan of a species can vary significantly. In some cases, dolphins can live up to 60 years, while certain types of tortoises have been known to exceed 150 years. Understanding the factors that influence longevity is essential in the study of wildlife conservation.</code> |
463
+ | <code>What is the estimated travel time from the Airport to the Mela grounds during peak hours?</code> | <code>The estimated travel time from the Airport to the Mela grounds is about 1 hour on non-peak days. Travel times may vary significantly during peak hours due to traffic and road conditions.<br><br></code> | <code>The recipe for chocolate cake requires several key ingredients to achieve the perfect texture. Begin by preheating the oven to 350°F. Combine flour, sugar, cocoa powder, and eggs in a large mixing bowl, stirring until smooth. Baking can be an enjoyable process filled with delightful aromas and flavors.</code> |
464
+ | <code>How safe is it to travel by public transport from Prayagraj city to the Kumbh Mela at night?</code> | <code>There is no direct metro service to the Mela grounds from Prayagraj city. However, Govt operated dedicated shuttle buses are available within Prayagraj for transportation to the Mela. These buses operate on fixed routes and fixed times.</code> | <code>The fastest way to prepare a delicious apple pie starts with choosing the right variety of apples. Granny Smith apples are great for tartness, while Honeycrisp provides sweetness. After washing and peeling the apples, slice them into thin pieces, ensuring an even texture. Combine the apple slices with sugar, cinnamon, and a hint of lemon juice. Roll out your pie crust and fill it generously with the apple mixture, top it with another crust, and create small vents to allow steam to escape. Bake at 425°F until golden brown, and enjoy the fantastic aroma that fills your kitchen!</code> |
465
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
466
+ ```json
467
+ {'guide': SentenceTransformer(
468
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
469
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
470
+ (2): Normalize()
471
+ ), 'temperature': 0.01}
472
+ ```
473
+
474
+ ### Training Hyperparameters
475
+ #### Non-Default Hyperparameters
476
+
477
+ - `eval_strategy`: steps
478
+ - `per_device_train_batch_size`: 16
479
+ - `gradient_accumulation_steps`: 2
480
+ - `learning_rate`: 1e-05
481
+ - `weight_decay`: 0.01
482
+ - `num_train_epochs`: 30
483
+ - `warmup_ratio`: 0.1
484
+ - `load_best_model_at_end`: True
485
+
486
+ #### All Hyperparameters
487
+ <details><summary>Click to expand</summary>
488
+
489
+ - `overwrite_output_dir`: False
490
+ - `do_predict`: False
491
+ - `eval_strategy`: steps
492
+ - `prediction_loss_only`: True
493
+ - `per_device_train_batch_size`: 16
494
+ - `per_device_eval_batch_size`: 8
495
+ - `per_gpu_train_batch_size`: None
496
+ - `per_gpu_eval_batch_size`: None
497
+ - `gradient_accumulation_steps`: 2
498
+ - `eval_accumulation_steps`: None
499
+ - `torch_empty_cache_steps`: None
500
+ - `learning_rate`: 1e-05
501
+ - `weight_decay`: 0.01
502
+ - `adam_beta1`: 0.9
503
+ - `adam_beta2`: 0.999
504
+ - `adam_epsilon`: 1e-08
505
+ - `max_grad_norm`: 1.0
506
+ - `num_train_epochs`: 30
507
+ - `max_steps`: -1
508
+ - `lr_scheduler_type`: linear
509
+ - `lr_scheduler_kwargs`: {}
510
+ - `warmup_ratio`: 0.1
511
+ - `warmup_steps`: 0
512
+ - `log_level`: passive
513
+ - `log_level_replica`: warning
514
+ - `log_on_each_node`: True
515
+ - `logging_nan_inf_filter`: True
516
+ - `save_safetensors`: True
517
+ - `save_on_each_node`: False
518
+ - `save_only_model`: False
519
+ - `restore_callback_states_from_checkpoint`: False
520
+ - `no_cuda`: False
521
+ - `use_cpu`: False
522
+ - `use_mps_device`: False
523
+ - `seed`: 42
524
+ - `data_seed`: None
525
+ - `jit_mode_eval`: False
526
+ - `use_ipex`: False
527
+ - `bf16`: False
528
+ - `fp16`: False
529
+ - `fp16_opt_level`: O1
530
+ - `half_precision_backend`: auto
531
+ - `bf16_full_eval`: False
532
+ - `fp16_full_eval`: False
533
+ - `tf32`: None
534
+ - `local_rank`: 0
535
+ - `ddp_backend`: None
536
+ - `tpu_num_cores`: None
537
+ - `tpu_metrics_debug`: False
538
+ - `debug`: []
539
+ - `dataloader_drop_last`: False
540
+ - `dataloader_num_workers`: 0
541
+ - `dataloader_prefetch_factor`: None
542
+ - `past_index`: -1
543
+ - `disable_tqdm`: False
544
+ - `remove_unused_columns`: True
545
+ - `label_names`: None
546
+ - `load_best_model_at_end`: True
547
+ - `ignore_data_skip`: False
548
+ - `fsdp`: []
549
+ - `fsdp_min_num_params`: 0
550
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
551
+ - `fsdp_transformer_layer_cls_to_wrap`: None
552
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
553
+ - `deepspeed`: None
554
+ - `label_smoothing_factor`: 0.0
555
+ - `optim`: adamw_torch
556
+ - `optim_args`: None
557
+ - `adafactor`: False
558
+ - `group_by_length`: False
559
+ - `length_column_name`: length
560
+ - `ddp_find_unused_parameters`: None
561
+ - `ddp_bucket_cap_mb`: None
562
+ - `ddp_broadcast_buffers`: False
563
+ - `dataloader_pin_memory`: True
564
+ - `dataloader_persistent_workers`: False
565
+ - `skip_memory_metrics`: True
566
+ - `use_legacy_prediction_loop`: False
567
+ - `push_to_hub`: False
568
+ - `resume_from_checkpoint`: None
569
+ - `hub_model_id`: None
570
+ - `hub_strategy`: every_save
571
+ - `hub_private_repo`: False
572
+ - `hub_always_push`: False
573
+ - `gradient_checkpointing`: False
574
+ - `gradient_checkpointing_kwargs`: None
575
+ - `include_inputs_for_metrics`: False
576
+ - `eval_do_concat_batches`: True
577
+ - `fp16_backend`: auto
578
+ - `push_to_hub_model_id`: None
579
+ - `push_to_hub_organization`: None
580
+ - `mp_parameters`:
581
+ - `auto_find_batch_size`: False
582
+ - `full_determinism`: False
583
+ - `torchdynamo`: None
584
+ - `ray_scope`: last
585
+ - `ddp_timeout`: 1800
586
+ - `torch_compile`: False
587
+ - `torch_compile_backend`: None
588
+ - `torch_compile_mode`: None
589
+ - `dispatch_batches`: None
590
+ - `split_batches`: None
591
+ - `include_tokens_per_second`: False
592
+ - `include_num_input_tokens_seen`: False
593
+ - `neftune_noise_alpha`: None
594
+ - `optim_target_modules`: None
595
+ - `batch_eval_metrics`: False
596
+ - `eval_on_start`: False
597
+ - `eval_use_gather_object`: False
598
+ - `batch_sampler`: batch_sampler
599
+ - `multi_dataset_batch_sampler`: proportional
600
+
601
+ </details>
602
+
603
+ ### Training Logs
604
+ <details><summary>Click to expand</summary>
605
+
606
+ | Epoch | Step | Training Loss | Validation Loss | val_evaluator_dot_map@100 |
607
+ |:-----------:|:-------:|:-------------:|:---------------:|:-------------------------:|
608
+ | 0.1980 | 10 | 0.8028 | 0.4071 | 0.6415 |
609
+ | 0.3960 | 20 | 0.7561 | 0.3701 | 0.6406 |
610
+ | 0.5941 | 30 | 0.9729 | 0.3100 | 0.6415 |
611
+ | 0.7921 | 40 | 0.6137 | 0.2505 | 0.6478 |
612
+ | 0.9901 | 50 | 0.4747 | 0.1978 | 0.6501 |
613
+ | 1.1881 | 60 | 0.4595 | 0.1609 | 0.6541 |
614
+ | 1.3861 | 70 | 0.3862 | 0.1300 | 0.6570 |
615
+ | 1.5842 | 80 | 0.293 | 0.1003 | 0.6606 |
616
+ | 1.7822 | 90 | 0.2806 | 0.0760 | 0.6588 |
617
+ | 1.9802 | 100 | 0.1249 | 0.0586 | 0.6616 |
618
+ | 2.1782 | 110 | 0.2265 | 0.0503 | 0.6677 |
619
+ | 2.3762 | 120 | 0.1292 | 0.0482 | 0.6701 |
620
+ | 2.5743 | 130 | 0.1649 | 0.0448 | 0.6756 |
621
+ | 2.7723 | 140 | 0.1213 | 0.0442 | 0.6810 |
622
+ | 2.9703 | 150 | 0.1363 | 0.0419 | 0.6843 |
623
+ | 3.1683 | 160 | 0.0972 | 0.0376 | 0.6859 |
624
+ | 3.3663 | 170 | 0.1079 | 0.0326 | 0.6896 |
625
+ | 3.5644 | 180 | 0.1265 | 0.0293 | 0.6899 |
626
+ | 3.7624 | 190 | 0.0645 | 0.0279 | 0.6952 |
627
+ | 3.9604 | 200 | 0.1116 | 0.0272 | 0.6934 |
628
+ | 4.1584 | 210 | 0.0757 | 0.0258 | 0.6954 |
629
+ | 4.3564 | 220 | 0.1492 | 0.0248 | 0.6991 |
630
+ | 4.5545 | 230 | 0.0536 | 0.0246 | 0.6971 |
631
+ | 4.7525 | 240 | 0.0346 | 0.0248 | 0.6958 |
632
+ | 4.9505 | 250 | 0.0501 | 0.0247 | 0.6974 |
633
+ | 5.1485 | 260 | 0.0443 | 0.0248 | 0.6975 |
634
+ | 5.3465 | 270 | 0.0585 | 0.0245 | 0.6998 |
635
+ | 5.5446 | 280 | 0.0514 | 0.0246 | 0.7013 |
636
+ | 5.7426 | 290 | 0.0948 | 0.0244 | 0.7073 |
637
+ | 5.9406 | 300 | 0.054 | 0.0243 | 0.7049 |
638
+ | 6.1386 | 310 | 0.0317 | 0.0241 | 0.7069 |
639
+ | 6.3366 | 320 | 0.1327 | 0.0249 | 0.7061 |
640
+ | 6.5347 | 330 | 0.0665 | 0.0255 | 0.7073 |
641
+ | 6.7327 | 340 | 0.09 | 0.0257 | 0.7073 |
642
+ | 6.9307 | 350 | 0.111 | 0.0255 | 0.7067 |
643
+ | 7.1287 | 360 | 0.0473 | 0.0255 | 0.7096 |
644
+ | 7.3267 | 370 | 0.0429 | 0.0248 | 0.7063 |
645
+ | 7.5248 | 380 | 0.0686 | 0.0249 | 0.7087 |
646
+ | 7.7228 | 390 | 0.1096 | 0.0251 | 0.7113 |
647
+ | 7.9208 | 400 | 0.0794 | 0.0255 | 0.7083 |
648
+ | 8.1188 | 410 | 0.0354 | 0.0246 | 0.7094 |
649
+ | 8.3168 | 420 | 0.078 | 0.0239 | 0.7093 |
650
+ | 8.5149 | 430 | 0.091 | 0.0234 | 0.7057 |
651
+ | 8.7129 | 440 | 0.084 | 0.0236 | 0.7107 |
652
+ | 8.9109 | 450 | 0.0702 | 0.0235 | 0.7114 |
653
+ | 9.1089 | 460 | 0.0701 | 0.0233 | 0.7142 |
654
+ | 9.3069 | 470 | 0.0706 | 0.0231 | 0.7140 |
655
+ | 9.5050 | 480 | 0.029 | 0.0230 | 0.7125 |
656
+ | 9.7030 | 490 | 0.0411 | 0.0233 | 0.7107 |
657
+ | 9.9010 | 500 | 0.0691 | 0.0233 | 0.7140 |
658
+ | 10.0990 | 510 | 0.0421 | 0.0232 | 0.7165 |
659
+ | 10.2970 | 520 | 0.0497 | 0.0232 | 0.7200 |
660
+ | 10.4950 | 530 | 0.0639 | 0.0232 | 0.7188 |
661
+ | 10.6931 | 540 | 0.0201 | 0.0238 | 0.7161 |
662
+ | 10.8911 | 550 | 0.0833 | 0.0241 | 0.7170 |
663
+ | 11.0891 | 560 | 0.0266 | 0.0242 | 0.7197 |
664
+ | 11.2871 | 570 | 0.0472 | 0.0241 | 0.7220 |
665
+ | 11.4851 | 580 | 0.0614 | 0.0240 | 0.7234 |
666
+ | 11.6832 | 590 | 0.0507 | 0.0242 | 0.7243 |
667
+ | 11.8812 | 600 | 0.031 | 0.0239 | 0.7226 |
668
+ | 12.0792 | 610 | 0.0413 | 0.0239 | 0.7216 |
669
+ | 12.2772 | 620 | 0.0222 | 0.0230 | 0.7234 |
670
+ | 12.4752 | 630 | 0.0466 | 0.0221 | 0.7239 |
671
+ | 12.6733 | 640 | 0.0482 | 0.0219 | 0.7218 |
672
+ | 12.8713 | 650 | 0.0657 | 0.0218 | 0.7197 |
673
+ | 13.0693 | 660 | 0.0521 | 0.0218 | 0.7235 |
674
+ | 13.2673 | 670 | 0.051 | 0.0218 | 0.7234 |
675
+ | 13.4653 | 680 | 0.0674 | 0.0220 | 0.7243 |
676
+ | 13.6634 | 690 | 0.0477 | 0.0220 | 0.7232 |
677
+ | 13.8614 | 700 | 0.0827 | 0.0218 | 0.7232 |
678
+ | 14.0594 | 710 | 0.0501 | 0.0217 | 0.7247 |
679
+ | 14.2574 | 720 | 0.0278 | 0.0216 | 0.7233 |
680
+ | 14.4554 | 730 | 0.0162 | 0.0216 | 0.7201 |
681
+ | 14.6535 | 740 | 0.0515 | 0.0217 | 0.7219 |
682
+ | 14.8515 | 750 | 0.0514 | 0.0218 | 0.7256 |
683
+ | 15.0495 | 760 | 0.088 | 0.0217 | 0.7252 |
684
+ | 15.2475 | 770 | 0.0298 | 0.0217 | 0.7226 |
685
+ | 15.4455 | 780 | 0.0682 | 0.0217 | 0.7259 |
686
+ | 15.6436 | 790 | 0.0485 | 0.0217 | 0.7253 |
687
+ | 15.8416 | 800 | 0.0419 | 0.0217 | 0.7286 |
688
+ | 16.0396 | 810 | 0.0823 | 0.0216 | 0.7268 |
689
+ | 16.2376 | 820 | 0.0533 | 0.0215 | 0.7250 |
690
+ | 16.4356 | 830 | 0.0336 | 0.0215 | 0.7262 |
691
+ | 16.6337 | 840 | 0.0375 | 0.0214 | 0.7270 |
692
+ | 16.8317 | 850 | 0.0243 | 0.0213 | 0.7281 |
693
+ | 17.0297 | 860 | 0.0675 | 0.0212 | 0.7265 |
694
+ | 17.2277 | 870 | 0.0482 | 0.0211 | 0.7260 |
695
+ | 17.4257 | 880 | 0.0511 | 0.0211 | 0.7297 |
696
+ | 17.6238 | 890 | 0.0396 | 0.0211 | 0.7282 |
697
+ | **17.8218** | **900** | **0.0493** | **0.0211** | **0.7275** |
698
+ | 18.0198 | 910 | 0.0378 | 0.0210 | 0.7279 |
699
+ | 18.2178 | 920 | 0.0546 | 0.0210 | 0.7265 |
700
+ | 18.4158 | 930 | 0.0421 | 0.0209 | 0.7286 |
701
+ | 18.6139 | 940 | 0.0599 | 0.0208 | 0.7286 |
702
+ | 18.8119 | 950 | 0.0766 | 0.0205 | 0.7297 |
703
+ | 19.0099 | 960 | 0.0204 | 0.0205 | 0.7275 |
704
+ | 19.2079 | 970 | 0.0321 | 0.0205 | 0.7282 |
705
+ | 19.4059 | 980 | 0.0069 | 0.0204 | 0.7266 |
706
+ | 19.6040 | 990 | 0.0563 | 0.0205 | 0.7245 |
707
+ | 19.8020 | 1000 | 0.0575 | 0.0205 | 0.7236 |
708
+ | 20.0 | 1010 | 0.0207 | 0.0205 | 0.7261 |
709
+ | 20.1980 | 1020 | 0.03 | 0.0205 | 0.7253 |
710
+ | 20.3960 | 1030 | 0.0712 | 0.0205 | 0.7269 |
711
+ | 20.5941 | 1040 | 0.0482 | 0.0205 | 0.7277 |
712
+ | 20.7921 | 1050 | 0.05 | 0.0205 | 0.7283 |
713
+ | 20.9901 | 1060 | 0.0407 | 0.0205 | 0.7282 |
714
+ | 21.1881 | 1070 | 0.0591 | 0.0205 | 0.7286 |
715
+ | 21.3861 | 1080 | 0.0228 | 0.0205 | 0.7265 |
716
+ | 21.5842 | 1090 | 0.0318 | 0.0205 | 0.7264 |
717
+ | 21.7822 | 1100 | 0.0768 | 0.0205 | 0.7254 |
718
+ | 21.9802 | 1110 | 0.0415 | 0.0205 | 0.7264 |
719
+ | 22.1782 | 1120 | 0.0681 | 0.0205 | 0.7252 |
720
+ | 22.3762 | 1130 | 0.0622 | 0.0205 | 0.7255 |
721
+ | 22.5743 | 1140 | 0.0508 | 0.0205 | 0.7251 |
722
+ | 22.7723 | 1150 | 0.0642 | 0.0205 | 0.7237 |
723
+ | 22.9703 | 1160 | 0.0469 | 0.0206 | 0.7245 |
724
+ | 23.1683 | 1170 | 0.0172 | 0.0206 | 0.7256 |
725
+ | 23.3663 | 1180 | 0.055 | 0.0206 | 0.7255 |
726
+ | 23.5644 | 1190 | 0.0488 | 0.0206 | 0.7266 |
727
+ | 23.7624 | 1200 | 0.0208 | 0.0206 | 0.7243 |
728
+ | 23.9604 | 1210 | 0.0415 | 0.0206 | 0.7249 |
729
+ | 24.1584 | 1220 | 0.0804 | 0.0206 | 0.7264 |
730
+ | 24.3564 | 1230 | 0.0243 | 0.0205 | 0.7256 |
731
+ | 24.5545 | 1240 | 0.037 | 0.0205 | 0.7258 |
732
+ | 24.7525 | 1250 | 0.0604 | 0.0205 | 0.7284 |
733
+ | 24.9505 | 1260 | 0.0278 | 0.0205 | 0.7245 |
734
+ | 25.1485 | 1270 | 0.0317 | 0.0205 | 0.7235 |
735
+ | 25.3465 | 1280 | 0.0824 | 0.0205 | 0.7253 |
736
+ | 25.5446 | 1290 | 0.0639 | 0.0205 | 0.7258 |
737
+ | 25.7426 | 1300 | 0.0269 | 0.0205 | 0.7247 |
738
+ | 25.9406 | 1310 | 0.0429 | 0.0205 | 0.7278 |
739
+ | 26.1386 | 1320 | 0.0692 | 0.0205 | 0.7279 |
740
+ | 26.3366 | 1330 | 0.0771 | 0.0205 | 0.7301 |
741
+ | 26.5347 | 1340 | 0.0578 | 0.0205 | 0.7280 |
742
+ | 26.7327 | 1350 | 0.025 | 0.0205 | 0.7258 |
743
+ | 26.9307 | 1360 | 0.0414 | 0.0205 | 0.7286 |
744
+ | 27.1287 | 1370 | 0.0484 | 0.0205 | 0.7284 |
745
+ | 27.3267 | 1380 | 0.0581 | 0.0205 | 0.7294 |
746
+ | 27.5248 | 1390 | 0.069 | 0.0205 | 0.7288 |
747
+ | 27.7228 | 1400 | 0.0864 | 0.0205 | 0.7301 |
748
+ | 27.9208 | 1410 | 0.0605 | 0.0205 | 0.7285 |
749
+ | 28.1188 | 1420 | 0.0327 | 0.0205 | 0.7271 |
750
+ | 28.3168 | 1430 | 0.0789 | 0.0205 | 0.7258 |
751
+ | 28.5149 | 1440 | 0.056 | 0.0205 | 0.7276 |
752
+ | 28.7129 | 1450 | 0.0256 | 0.0205 | 0.7272 |
753
+ | 28.9109 | 1460 | 0.0316 | 0.0205 | 0.7273 |
754
+ | 29.1089 | 1470 | 0.0528 | 0.0205 | 0.7287 |
755
+ | 29.3069 | 1480 | 0.0552 | 0.0205 | 0.7274 |
756
+ | 29.5050 | 1490 | 0.0441 | 0.0205 | 0.7287 |
757
+ | 29.7030 | 1500 | 0.0246 | 0.0205 | 0.7290 |
758
+
759
+ * The bold row denotes the saved checkpoint.
760
+ </details>
761
+
762
+ ### Framework Versions
763
+ - Python: 3.10.12
764
+ - Sentence Transformers: 3.2.1
765
+ - Transformers: 4.44.2
766
+ - PyTorch: 2.5.0+cu121
767
+ - Accelerate: 0.34.2
768
+ - Datasets: 3.1.0
769
+ - Tokenizers: 0.19.1
770
+
771
+ ## Citation
772
+
773
+ ### BibTeX
774
+
775
+ #### Sentence Transformers
776
+ ```bibtex
777
+ @inproceedings{reimers-2019-sentence-bert,
778
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
779
+ author = "Reimers, Nils and Gurevych, Iryna",
780
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
781
+ month = "11",
782
+ year = "2019",
783
+ publisher = "Association for Computational Linguistics",
784
+ url = "https://arxiv.org/abs/1908.10084",
785
+ }
786
+ ```
787
+
788
+ #### GISTEmbedLoss
789
+ ```bibtex
790
+ @misc{solatorio2024gistembed,
791
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
792
+ author={Aivin V. Solatorio},
793
+ year={2024},
794
+ eprint={2402.16829},
795
+ archivePrefix={arXiv},
796
+ primaryClass={cs.LG}
797
+ }
798
+ ```
799
+
800
+ <!--
801
+ ## Glossary
802
+
803
+ *Clearly define terms in order to be accessible across audiences.*
804
+ -->
805
+
806
+ <!--
807
+ ## Model Card Authors
808
+
809
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
810
+ -->
811
+
812
+ <!--
813
+ ## Model Card Contact
814
+
815
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
816
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.44.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfd91a1e221469bc3f8859f153326fe119a6771fa4d552ea2897816b06ee535f
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff