hiroki-rad
commited on
Commit
•
231f85a
1
Parent(s):
72c2329
how to use create
Browse files
README.md
CHANGED
@@ -1,199 +1,117 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- elyza/ELYZA-tasks-100
|
5 |
+
language:
|
6 |
+
- ja
|
7 |
+
base_model:
|
8 |
+
- llm-jp/llm-jp-3-13b
|
9 |
+
pipeline_tag: text-generation
|
10 |
---
|
11 |
|
|
|
12 |
|
13 |
+
## How to Uses
|
14 |
+
```python
|
15 |
+
# ライブラリのインストール
|
16 |
+
!pip install -U langchain-community langchain-huggingface vllm triton fugashi unidic-lite
|
17 |
+
# インストール
|
18 |
+
import json
|
19 |
+
import pandas as pd
|
20 |
+
from tqdm import tqdm
|
21 |
+
from transformers import pipeline
|
22 |
+
from langchain_community.llms import VLLM
|
23 |
+
from langchain.prompts import PromptTemplate
|
24 |
+
from langchain_core.runnables import RunnablePassthrough
|
25 |
+
from langchain.schema.output_parser import StrOutputParser
|
26 |
+
|
27 |
+
|
28 |
+
# GitHub repositoryのclone
|
29 |
+
!git clone https://github.com/y-hiroki-radiotech/llm-final-task.git
|
30 |
+
%cd llm-final-task
|
31 |
+
|
32 |
+
# タスク別に設定したプロンプトを使うために、PromptStockクラスをインスタンス化
|
33 |
+
from prompt import PromptStock
|
34 |
+
prompt_stock = PromptStock()
|
35 |
+
|
36 |
+
# データのpandas形式で準備する
|
37 |
+
file_path = 'elyza-tasks-100-TV_0.jsonl' # ここにjsonlを指定する
|
38 |
+
data = pd.read_json(file_path, lines=True)
|
39 |
+
|
40 |
+
# データのinputに対して、タスクラベルを与える。タスクを8分類してある。
|
41 |
+
model_name = "hiroki-rad/bert-base-classification-ft"
|
42 |
+
classify_pipe = pipeline(model=model_name, device="cuda:0")
|
43 |
+
|
44 |
+
results: list[dict[str, float | str]] = []
|
45 |
+
for example in data.itertuples():
|
46 |
+
# モデルの予測結果を取得
|
47 |
+
model_prediction = classify_pipe(example.input)[0]
|
48 |
+
# 正解のラベルIDをラベル名に変換
|
49 |
+
results.append( model_prediction["label"])
|
50 |
+
|
51 |
+
data["label"] = results
|
52 |
+
|
53 |
+
# タスク回答のためのモデルをvLLMを使ってインストール
|
54 |
+
model_name = "hiroki-rad/llm-jp-llm-jp-3-13b-16-ft"
|
55 |
+
|
56 |
+
llm = VLLM(model=model_name,
|
57 |
+
quantization="awq")
|
58 |
+
|
59 |
+
# テンプレートの作成
|
60 |
+
template = """
|
61 |
+
ユーザー: 質問を良く読んで、適切な回答をしてください。
|
62 |
+
{context}
|
63 |
+
質問:{input}
|
64 |
+
回答:"""
|
65 |
+
|
66 |
+
prompt = PromptTemplate(
|
67 |
+
template=template,
|
68 |
+
input_variables=["context", "input"],
|
69 |
+
template_format="f-string"
|
70 |
+
)
|
71 |
+
# chainの作成
|
72 |
+
vllm_chain = prompt | llm
|
73 |
+
|
74 |
+
chain = (
|
75 |
+
RunnablePassthrough()
|
76 |
+
| vllm_chain
|
77 |
+
| StrOutputParser()
|
78 |
+
)
|
79 |
+
|
80 |
+
outputs = []
|
81 |
+
total_rows = len(data)
|
82 |
+
with tqdm(total=total_rows,
|
83 |
+
desc="Processing rows",
|
84 |
+
position=0,
|
85 |
+
leave=True
|
86 |
+
) as pbar:
|
87 |
+
for row in data.itertuples():
|
88 |
+
prompt_string = prompt_stock.get_prompt(row.label)
|
89 |
+
|
90 |
+
input_dict = {
|
91 |
+
"context": prompt_string,
|
92 |
+
"input": row.input
|
93 |
+
}
|
94 |
+
|
95 |
+
output = chain.invoke(input_dict)
|
96 |
+
outputs.append(output)
|
97 |
+
|
98 |
+
pbar.update(1)
|
99 |
+
|
100 |
+
# 出力
|
101 |
+
jsonl_data = []
|
102 |
+
|
103 |
+
for i in range(len(data)):
|
104 |
+
task_id = data.iloc[i]["task_id"]
|
105 |
+
output = outputs[i]
|
106 |
+
|
107 |
+
jsonl_object = {
|
108 |
+
"task_id": task_id,
|
109 |
+
"output": output
|
110 |
+
}
|
111 |
+
jsonl_data.append(jsonl_object)
|
112 |
+
|
113 |
+
with open("output.jsonl", "w") as outfile:
|
114 |
+
for entry in jsonl_data:
|
115 |
+
entry["task_id"] = int(entry["task_id"])
|
116 |
+
json.dump(entry, outfile)
|
117 |
+
outfile.write('\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|