hiroki-rad commited on
Commit
231f85a
1 Parent(s): 72c2329

how to use create

Browse files
Files changed (1) hide show
  1. README.md +112 -194
README.md CHANGED
@@ -1,199 +1,117 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ datasets:
4
+ - elyza/ELYZA-tasks-100
5
+ language:
6
+ - ja
7
+ base_model:
8
+ - llm-jp/llm-jp-3-13b
9
+ pipeline_tag: text-generation
10
  ---
11
 
 
12
 
13
+ ## How to Uses
14
+ ```python
15
+ # ライブラリのインストール
16
+ !pip install -U langchain-community langchain-huggingface vllm triton fugashi unidic-lite
17
+ # インストール
18
+ import json
19
+ import pandas as pd
20
+ from tqdm import tqdm
21
+ from transformers import pipeline
22
+ from langchain_community.llms import VLLM
23
+ from langchain.prompts import PromptTemplate
24
+ from langchain_core.runnables import RunnablePassthrough
25
+ from langchain.schema.output_parser import StrOutputParser
26
+
27
+
28
+ # GitHub repositoryのclone
29
+ !git clone https://github.com/y-hiroki-radiotech/llm-final-task.git
30
+ %cd llm-final-task
31
+
32
+ # タスク別に設定したプロンプトを使うために、PromptStockクラスをインスタンス化
33
+ from prompt import PromptStock
34
+ prompt_stock = PromptStock()
35
+
36
+ # データのpandas形式で準備する
37
+ file_path = 'elyza-tasks-100-TV_0.jsonl' # ここにjsonlを指定する
38
+ data = pd.read_json(file_path, lines=True)
39
+
40
+ # データのinputに対して、タスクラベルを与える。タスクを8分類してある。
41
+ model_name = "hiroki-rad/bert-base-classification-ft"
42
+ classify_pipe = pipeline(model=model_name, device="cuda:0")
43
+
44
+ results: list[dict[str, float | str]] = []
45
+ for example in data.itertuples():
46
+ # モデルの予測結果を取得
47
+ model_prediction = classify_pipe(example.input)[0]
48
+ # 正解のラベルIDをラベル名に変換
49
+ results.append( model_prediction["label"])
50
+
51
+ data["label"] = results
52
+
53
+ # タスク回答のためのモデルをvLLMを使ってインストール
54
+ model_name = "hiroki-rad/llm-jp-llm-jp-3-13b-16-ft"
55
+
56
+ llm = VLLM(model=model_name,
57
+ quantization="awq")
58
+
59
+ # テンプレートの作成
60
+ template = """
61
+ ユーザー: 質問を良く読んで、適切な回答をしてください。
62
+ {context}
63
+ 質問:{input}
64
+ 回答:"""
65
+
66
+ prompt = PromptTemplate(
67
+ template=template,
68
+ input_variables=["context", "input"],
69
+ template_format="f-string"
70
+ )
71
+ # chainの作成
72
+ vllm_chain = prompt | llm
73
+
74
+ chain = (
75
+ RunnablePassthrough()
76
+ | vllm_chain
77
+ | StrOutputParser()
78
+ )
79
+
80
+ outputs = []
81
+ total_rows = len(data)
82
+ with tqdm(total=total_rows,
83
+ desc="Processing rows",
84
+ position=0,
85
+ leave=True
86
+ ) as pbar:
87
+ for row in data.itertuples():
88
+ prompt_string = prompt_stock.get_prompt(row.label)
89
+
90
+ input_dict = {
91
+ "context": prompt_string,
92
+ "input": row.input
93
+ }
94
+
95
+ output = chain.invoke(input_dict)
96
+ outputs.append(output)
97
+
98
+ pbar.update(1)
99
+
100
+ # 出力
101
+ jsonl_data = []
102
+
103
+ for i in range(len(data)):
104
+ task_id = data.iloc[i]["task_id"]
105
+ output = outputs[i]
106
+
107
+ jsonl_object = {
108
+ "task_id": task_id,
109
+ "output": output
110
+ }
111
+ jsonl_data.append(jsonl_object)
112
+
113
+ with open("output.jsonl", "w") as outfile:
114
+ for entry in jsonl_data:
115
+ entry["task_id"] = int(entry["task_id"])
116
+ json.dump(entry, outfile)
117
+ outfile.write('\n')