--- license: cc-by-nc-4.0 language: - bn library_name: nemo pipeline_tag: automatic-speech-recognition tags: - ASR - Automatic Speech Recognition - Bangla ASR - Bengali ASR - bn asr - Bangla fastconformer - https://arxiv.org/abs/2311.03196 --- ## Summary __titu_stt_bn_fastconformer__ is a [fastconformer](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/models.html#fast-conformer) based model trained on ~18K Hours [MegaBNSpeech]() corpus. Details on paper: [https://aclanthology.org/2023.banglalp-1.16/](https://aclanthology.org/2023.banglalp-1.16/) ## Using method This model can be used for transcribing Bangla audio and also can be used as pre-trained model to fine-tuning on custom datasets using [NeMo](https://github.com/NVIDIA/NeMo) framework. ### Installation To install [NeMo](https://github.com/NVIDIA/NeMo) check NeMo documentation. ``` pip install -q 'nemo_toolkit[asr]' ``` ### Inferencing [Download test_bn_fastconformer.wav](https://huggingface.co/hishab/hishab_bn_fastconformer/blob/main/test_bn_fastconformer.wav) ```py # pip install -q 'nemo_toolkit[asr]' import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("hishab/titu_stt_bn_fastconformer") auido_file = "test_bn_fastconformer.wav" transcriptions = asr_model.transcribe([auido_file]) print(transcriptions) # ['আজ সরকারি ছুটির দিন দেশের সব শিক্ষা প্রতিষ্ঠান সহ সরকারি আধা সরকারি স্বায়ত্তশাসিত প্রতিষ্ঠান ও ভবনে জাতীয় পতাকা অর্ধনমিত ও কালো পতাকা উত্তোলন করা হয়েছে'] ``` Colab Notebook for Infer: [Bangla FastConformer Infer.ipynb](https://colab.research.google.com/drive/1J3bxXlLBgSf1zOKVKbRYu1VrbEJFLlUc?usp=sharing) ## Training Datasets | Channels Category | Hours | | ----------------- | ----------- | | News | 17,640.00 | | Talkshow | 688.82 | | Vlog | 0.02 | | Crime Show | 4.08 | | Total | 18,332.92 | ## Training Details For training the model, the dataset we selected comprises 17.64k hours of news chan- nel content, 688.82 hours of talk shows, 0.02 hours of vlogs, and 4.08 hours of crime shows. ## Evaluation ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64df9253cccd823564c3303b/WvMlp95z2-GXT6AYfwW8Y.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64df9253cccd823564c3303b/O2RA9TAedIv1OTqgdIap5.png) ## Citation ``` @inproceedings{nandi-etal-2023-pseudo, title = "Pseudo-Labeling for Domain-Agnostic {B}angla Automatic Speech Recognition", author = "Nandi, Rabindra Nath and Menon, Mehadi and Muntasir, Tareq and Sarker, Sagor and Muhtaseem, Quazi Sarwar and Islam, Md. Tariqul and Chowdhury, Shammur and Alam, Firoj", editor = "Alam, Firoj and Kar, Sudipta and Chowdhury, Shammur Absar and Sadeque, Farig and Amin, Ruhul", booktitle = "Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.banglalp-1.16", doi = "10.18653/v1/2023.banglalp-1.16", pages = "152--162", abstract = "One of the major challenges for developing automatic speech recognition (ASR) for low-resource languages is the limited access to labeled data with domain-specific variations. In this study, we propose a pseudo-labeling approach to develop a large-scale domain-agnostic ASR dataset. With the proposed methodology, we developed a 20k+ hours labeled Bangla speech dataset covering diverse topics, speaking styles, dialects, noisy environments, and conversational scenarios. We then exploited the developed corpus to design a conformer-based ASR system. We benchmarked the trained ASR with publicly available datasets and compared it with other available models. To investigate the efficacy, we designed and developed a human-annotated domain-agnostic test set composed of news, telephony, and conversational data among others. Our results demonstrate the efficacy of the model trained on psuedo-label data for the designed test-set along with publicly-available Bangla datasets. The experimental resources will be publicly available.https://github.com/hishab-nlp/Pseudo-Labeling-for-Domain-Agnostic-Bangla-ASR", } ```