diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" --- "a/trainer_log.jsonl" +++ "b/trainer_log.jsonl" @@ -2007,3 +2007,504 @@ {"current_steps": 2007, "total_steps": 2509, "loss": 0.8029, "learning_rate": 3.900355638757452e-06, "epoch": 0.7998405898176746, "percentage": 79.99, "elapsed_time": "5:36:32", "remaining_time": "1:24:10"} {"current_steps": 2008, "total_steps": 2509, "loss": 0.7794, "learning_rate": 3.885355209965865e-06, "epoch": 0.8002391152734881, "percentage": 80.03, "elapsed_time": "5:36:42", "remaining_time": "1:24:00"} {"current_steps": 2009, "total_steps": 2509, "loss": 0.8098, "learning_rate": 3.870380578042505e-06, "epoch": 0.8006376407293015, "percentage": 80.07, "elapsed_time": "5:36:52", "remaining_time": "1:23:50"} +{"current_steps": 2010, "total_steps": 2509, "loss": 0.803, "learning_rate": 3.85543176695927e-06, "epoch": 0.8010361661851151, "percentage": 80.11, "elapsed_time": "5:37:02", "remaining_time": "1:23:40"} +{"current_steps": 2011, "total_steps": 2509, "loss": 0.8175, "learning_rate": 3.840508800646725e-06, "epoch": 0.8014346916409285, "percentage": 80.15, "elapsed_time": "5:37:12", "remaining_time": "1:23:30"} +{"current_steps": 2012, "total_steps": 2509, "loss": 0.8009, "learning_rate": 3.825611702994061e-06, "epoch": 0.801833217096742, "percentage": 80.19, "elapsed_time": "5:37:22", "remaining_time": "1:23:20"} +{"current_steps": 2013, "total_steps": 2509, "loss": 0.7807, "learning_rate": 3.810740497849048e-06, "epoch": 0.8022317425525556, "percentage": 80.23, "elapsed_time": "5:37:32", "remaining_time": "1:23:10"} +{"current_steps": 2014, "total_steps": 2509, "loss": 0.8019, "learning_rate": 3.7958952090180145e-06, "epoch": 0.802630268008369, "percentage": 80.27, "elapsed_time": "5:37:42", "remaining_time": "1:23:00"} +{"current_steps": 2015, "total_steps": 2509, "loss": 0.7816, "learning_rate": 3.781075860265806e-06, "epoch": 0.8030287934641825, "percentage": 80.31, "elapsed_time": "5:37:53", "remaining_time": "1:22:50"} +{"current_steps": 2016, "total_steps": 2509, "loss": 0.7638, "learning_rate": 3.766282475315741e-06, "epoch": 0.803427318919996, "percentage": 80.35, "elapsed_time": "5:38:03", "remaining_time": "1:22:40"} +{"current_steps": 2017, "total_steps": 2509, "loss": 0.806, "learning_rate": 3.7515150778495566e-06, "epoch": 0.8038258443758095, "percentage": 80.39, "elapsed_time": "5:38:13", "remaining_time": "1:22:30"} +{"current_steps": 2018, "total_steps": 2509, "loss": 0.7552, "learning_rate": 3.7367736915074116e-06, "epoch": 0.804224369831623, "percentage": 80.43, "elapsed_time": "5:38:23", "remaining_time": "1:22:19"} +{"current_steps": 2019, "total_steps": 2509, "loss": 0.7926, "learning_rate": 3.7220583398878198e-06, "epoch": 0.8046228952874365, "percentage": 80.47, "elapsed_time": "5:38:33", "remaining_time": "1:22:09"} +{"current_steps": 2020, "total_steps": 2509, "loss": 0.8021, "learning_rate": 3.7073690465475996e-06, "epoch": 0.80502142074325, "percentage": 80.51, "elapsed_time": "5:38:43", "remaining_time": "1:21:59"} +{"current_steps": 2021, "total_steps": 2509, "loss": 0.7833, "learning_rate": 3.6927058350018774e-06, "epoch": 0.8054199461990634, "percentage": 80.55, "elapsed_time": "5:38:53", "remaining_time": "1:21:49"} +{"current_steps": 2022, "total_steps": 2509, "loss": 0.7916, "learning_rate": 3.678068728724018e-06, "epoch": 0.805818471654877, "percentage": 80.59, "elapsed_time": "5:39:03", "remaining_time": "1:21:39"} +{"current_steps": 2023, "total_steps": 2509, "loss": 0.8342, "learning_rate": 3.663457751145598e-06, "epoch": 0.8062169971106904, "percentage": 80.63, "elapsed_time": "5:39:13", "remaining_time": "1:21:29"} +{"current_steps": 2024, "total_steps": 2509, "loss": 0.7984, "learning_rate": 3.648872925656357e-06, "epoch": 0.8066155225665039, "percentage": 80.67, "elapsed_time": "5:39:23", "remaining_time": "1:21:19"} +{"current_steps": 2025, "total_steps": 2509, "loss": 0.8018, "learning_rate": 3.6343142756041804e-06, "epoch": 0.8070140480223175, "percentage": 80.71, "elapsed_time": "5:39:33", "remaining_time": "1:21:09"} +{"current_steps": 2026, "total_steps": 2509, "loss": 0.7707, "learning_rate": 3.61978182429505e-06, "epoch": 0.8074125734781309, "percentage": 80.75, "elapsed_time": "5:39:43", "remaining_time": "1:20:59"} +{"current_steps": 2027, "total_steps": 2509, "loss": 0.8014, "learning_rate": 3.6052755949930028e-06, "epoch": 0.8078110989339444, "percentage": 80.79, "elapsed_time": "5:39:53", "remaining_time": "1:20:49"} +{"current_steps": 2028, "total_steps": 2509, "loss": 0.7783, "learning_rate": 3.590795610920106e-06, "epoch": 0.8082096243897579, "percentage": 80.83, "elapsed_time": "5:40:03", "remaining_time": "1:20:39"} +{"current_steps": 2029, "total_steps": 2509, "loss": 0.7887, "learning_rate": 3.5763418952563964e-06, "epoch": 0.8086081498455714, "percentage": 80.87, "elapsed_time": "5:40:13", "remaining_time": "1:20:29"} +{"current_steps": 2030, "total_steps": 2509, "loss": 0.7844, "learning_rate": 3.561914471139887e-06, "epoch": 0.8090066753013849, "percentage": 80.91, "elapsed_time": "5:40:23", "remaining_time": "1:20:19"} +{"current_steps": 2031, "total_steps": 2509, "loss": 0.7904, "learning_rate": 3.547513361666468e-06, "epoch": 0.8094052007571984, "percentage": 80.95, "elapsed_time": "5:40:33", "remaining_time": "1:20:09"} +{"current_steps": 2032, "total_steps": 2509, "loss": 0.7691, "learning_rate": 3.5331385898899286e-06, "epoch": 0.8098037262130119, "percentage": 80.99, "elapsed_time": "5:40:43", "remaining_time": "1:19:59"} +{"current_steps": 2033, "total_steps": 2509, "loss": 0.8199, "learning_rate": 3.5187901788219005e-06, "epoch": 0.8102022516688253, "percentage": 81.03, "elapsed_time": "5:40:54", "remaining_time": "1:19:49"} +{"current_steps": 2034, "total_steps": 2509, "loss": 0.7814, "learning_rate": 3.5044681514317923e-06, "epoch": 0.8106007771246388, "percentage": 81.07, "elapsed_time": "5:41:04", "remaining_time": "1:19:38"} +{"current_steps": 2035, "total_steps": 2509, "loss": 0.7769, "learning_rate": 3.4901725306467983e-06, "epoch": 0.8109993025804523, "percentage": 81.11, "elapsed_time": "5:41:14", "remaining_time": "1:19:28"} +{"current_steps": 2036, "total_steps": 2509, "loss": 0.7811, "learning_rate": 3.4759033393518227e-06, "epoch": 0.8113978280362658, "percentage": 81.15, "elapsed_time": "5:41:24", "remaining_time": "1:19:18"} +{"current_steps": 2037, "total_steps": 2509, "loss": 0.7819, "learning_rate": 3.461660600389476e-06, "epoch": 0.8117963534920793, "percentage": 81.19, "elapsed_time": "5:41:34", "remaining_time": "1:19:08"} +{"current_steps": 2038, "total_steps": 2509, "loss": 0.7816, "learning_rate": 3.447444336560013e-06, "epoch": 0.8121948789478928, "percentage": 81.23, "elapsed_time": "5:41:44", "remaining_time": "1:18:58"} +{"current_steps": 2039, "total_steps": 2509, "loss": 0.7927, "learning_rate": 3.4332545706213092e-06, "epoch": 0.8125934044037063, "percentage": 81.27, "elapsed_time": "5:41:54", "remaining_time": "1:18:48"} +{"current_steps": 2040, "total_steps": 2509, "loss": 0.804, "learning_rate": 3.4190913252888304e-06, "epoch": 0.8129919298595197, "percentage": 81.31, "elapsed_time": "5:42:04", "remaining_time": "1:18:38"} +{"current_steps": 2041, "total_steps": 2509, "loss": 0.7874, "learning_rate": 3.4049546232355677e-06, "epoch": 0.8133904553153333, "percentage": 81.35, "elapsed_time": "5:42:14", "remaining_time": "1:18:28"} +{"current_steps": 2042, "total_steps": 2509, "loss": 0.7805, "learning_rate": 3.3908444870920377e-06, "epoch": 0.8137889807711468, "percentage": 81.39, "elapsed_time": "5:42:24", "remaining_time": "1:18:18"} +{"current_steps": 2043, "total_steps": 2509, "loss": 0.78, "learning_rate": 3.3767609394462177e-06, "epoch": 0.8141875062269602, "percentage": 81.43, "elapsed_time": "5:42:34", "remaining_time": "1:18:08"} +{"current_steps": 2044, "total_steps": 2509, "loss": 0.7801, "learning_rate": 3.3627040028435266e-06, "epoch": 0.8145860316827738, "percentage": 81.47, "elapsed_time": "5:42:44", "remaining_time": "1:17:58"} +{"current_steps": 2045, "total_steps": 2509, "loss": 0.7824, "learning_rate": 3.3486736997867973e-06, "epoch": 0.8149845571385872, "percentage": 81.51, "elapsed_time": "5:42:54", "remaining_time": "1:17:48"} +{"current_steps": 2046, "total_steps": 2509, "loss": 0.7955, "learning_rate": 3.3346700527361976e-06, "epoch": 0.8153830825944007, "percentage": 81.55, "elapsed_time": "5:43:04", "remaining_time": "1:17:38"} +{"current_steps": 2047, "total_steps": 2509, "loss": 0.7897, "learning_rate": 3.320693084109252e-06, "epoch": 0.8157816080502142, "percentage": 81.59, "elapsed_time": "5:43:14", "remaining_time": "1:17:28"} +{"current_steps": 2048, "total_steps": 2509, "loss": 0.8005, "learning_rate": 3.3067428162807524e-06, "epoch": 0.8161801335060277, "percentage": 81.63, "elapsed_time": "5:43:25", "remaining_time": "1:17:18"} +{"current_steps": 2049, "total_steps": 2509, "loss": 0.8053, "learning_rate": 3.2928192715827635e-06, "epoch": 0.8165786589618412, "percentage": 81.67, "elapsed_time": "5:43:35", "remaining_time": "1:17:08"} +{"current_steps": 2050, "total_steps": 2509, "loss": 0.7969, "learning_rate": 3.2789224723045688e-06, "epoch": 0.8169771844176547, "percentage": 81.71, "elapsed_time": "5:43:45", "remaining_time": "1:16:57"} +{"current_steps": 2051, "total_steps": 2509, "loss": 0.7926, "learning_rate": 3.265052440692633e-06, "epoch": 0.8173757098734682, "percentage": 81.75, "elapsed_time": "5:43:55", "remaining_time": "1:16:47"} +{"current_steps": 2052, "total_steps": 2509, "loss": 0.7774, "learning_rate": 3.2512091989505755e-06, "epoch": 0.8177742353292816, "percentage": 81.79, "elapsed_time": "5:44:05", "remaining_time": "1:16:37"} +{"current_steps": 2053, "total_steps": 2509, "loss": 0.793, "learning_rate": 3.2373927692391183e-06, "epoch": 0.8181727607850952, "percentage": 81.83, "elapsed_time": "5:44:15", "remaining_time": "1:16:27"} +{"current_steps": 2054, "total_steps": 2509, "loss": 0.7726, "learning_rate": 3.2236031736760775e-06, "epoch": 0.8185712862409087, "percentage": 81.87, "elapsed_time": "5:44:25", "remaining_time": "1:16:17"} +{"current_steps": 2055, "total_steps": 2509, "loss": 0.7794, "learning_rate": 3.209840434336291e-06, "epoch": 0.8189698116967221, "percentage": 81.91, "elapsed_time": "5:44:35", "remaining_time": "1:16:07"} +{"current_steps": 2056, "total_steps": 2509, "loss": 0.791, "learning_rate": 3.196104573251633e-06, "epoch": 0.8193683371525357, "percentage": 81.94, "elapsed_time": "5:44:45", "remaining_time": "1:15:57"} +{"current_steps": 2057, "total_steps": 2509, "loss": 0.7862, "learning_rate": 3.1823956124109245e-06, "epoch": 0.8197668626083491, "percentage": 81.98, "elapsed_time": "5:44:55", "remaining_time": "1:15:47"} +{"current_steps": 2058, "total_steps": 2509, "loss": 0.7666, "learning_rate": 3.168713573759934e-06, "epoch": 0.8201653880641626, "percentage": 82.02, "elapsed_time": "5:45:05", "remaining_time": "1:15:37"} +{"current_steps": 2059, "total_steps": 2509, "loss": 0.7433, "learning_rate": 3.1550584792013384e-06, "epoch": 0.820563913519976, "percentage": 82.06, "elapsed_time": "5:45:15", "remaining_time": "1:15:27"} +{"current_steps": 2060, "total_steps": 2509, "loss": 0.7976, "learning_rate": 3.1414303505946674e-06, "epoch": 0.8209624389757896, "percentage": 82.1, "elapsed_time": "5:45:25", "remaining_time": "1:15:17"} +{"current_steps": 2061, "total_steps": 2509, "loss": 0.8333, "learning_rate": 3.1278292097562902e-06, "epoch": 0.8213609644316031, "percentage": 82.14, "elapsed_time": "5:45:35", "remaining_time": "1:15:07"} +{"current_steps": 2062, "total_steps": 2509, "loss": 0.8266, "learning_rate": 3.1142550784593784e-06, "epoch": 0.8217594898874165, "percentage": 82.18, "elapsed_time": "5:45:45", "remaining_time": "1:14:57"} +{"current_steps": 2063, "total_steps": 2509, "loss": 0.7876, "learning_rate": 3.100707978433859e-06, "epoch": 0.8221580153432301, "percentage": 82.22, "elapsed_time": "5:45:55", "remaining_time": "1:14:47"} +{"current_steps": 2064, "total_steps": 2509, "loss": 0.7614, "learning_rate": 3.087187931366382e-06, "epoch": 0.8225565407990435, "percentage": 82.26, "elapsed_time": "5:46:05", "remaining_time": "1:14:37"} +{"current_steps": 2065, "total_steps": 2509, "loss": 0.7781, "learning_rate": 3.0736949589003016e-06, "epoch": 0.822955066254857, "percentage": 82.3, "elapsed_time": "5:46:15", "remaining_time": "1:14:27"} +{"current_steps": 2066, "total_steps": 2509, "loss": 0.772, "learning_rate": 3.0602290826356264e-06, "epoch": 0.8233535917106706, "percentage": 82.34, "elapsed_time": "5:46:25", "remaining_time": "1:14:16"} +{"current_steps": 2067, "total_steps": 2509, "loss": 0.7872, "learning_rate": 3.046790324128972e-06, "epoch": 0.823752117166484, "percentage": 82.38, "elapsed_time": "5:46:35", "remaining_time": "1:14:06"} +{"current_steps": 2068, "total_steps": 2509, "loss": 0.7887, "learning_rate": 3.0333787048935794e-06, "epoch": 0.8241506426222975, "percentage": 82.42, "elapsed_time": "5:46:45", "remaining_time": "1:13:56"} +{"current_steps": 2069, "total_steps": 2509, "loss": 0.7882, "learning_rate": 3.019994246399205e-06, "epoch": 0.824549168078111, "percentage": 82.46, "elapsed_time": "5:46:56", "remaining_time": "1:13:46"} +{"current_steps": 2070, "total_steps": 2509, "loss": 0.8076, "learning_rate": 3.006636970072152e-06, "epoch": 0.8249476935339245, "percentage": 82.5, "elapsed_time": "5:47:06", "remaining_time": "1:13:36"} +{"current_steps": 2071, "total_steps": 2509, "loss": 0.7764, "learning_rate": 2.993306897295194e-06, "epoch": 0.8253462189897379, "percentage": 82.54, "elapsed_time": "5:47:16", "remaining_time": "1:13:26"} +{"current_steps": 2072, "total_steps": 2509, "loss": 0.7764, "learning_rate": 2.980004049407561e-06, "epoch": 0.8257447444455515, "percentage": 82.58, "elapsed_time": "5:47:26", "remaining_time": "1:13:16"} +{"current_steps": 2073, "total_steps": 2509, "loss": 0.7826, "learning_rate": 2.9667284477049075e-06, "epoch": 0.826143269901365, "percentage": 82.62, "elapsed_time": "5:47:36", "remaining_time": "1:13:06"} +{"current_steps": 2074, "total_steps": 2509, "loss": 0.7757, "learning_rate": 2.9534801134392644e-06, "epoch": 0.8265417953571784, "percentage": 82.66, "elapsed_time": "5:47:46", "remaining_time": "1:12:56"} +{"current_steps": 2075, "total_steps": 2509, "loss": 0.7943, "learning_rate": 2.9402590678190134e-06, "epoch": 0.826940320812992, "percentage": 82.7, "elapsed_time": "5:47:56", "remaining_time": "1:12:46"} +{"current_steps": 2076, "total_steps": 2509, "loss": 0.796, "learning_rate": 2.927065332008847e-06, "epoch": 0.8273388462688054, "percentage": 82.74, "elapsed_time": "5:48:06", "remaining_time": "1:12:36"} +{"current_steps": 2077, "total_steps": 2509, "loss": 0.7757, "learning_rate": 2.9138989271297525e-06, "epoch": 0.8277373717246189, "percentage": 82.78, "elapsed_time": "5:48:16", "remaining_time": "1:12:26"} +{"current_steps": 2078, "total_steps": 2509, "loss": 0.8125, "learning_rate": 2.900759874258938e-06, "epoch": 0.8281358971804323, "percentage": 82.82, "elapsed_time": "5:48:26", "remaining_time": "1:12:16"} +{"current_steps": 2079, "total_steps": 2509, "loss": 0.7641, "learning_rate": 2.887648194429862e-06, "epoch": 0.8285344226362459, "percentage": 82.86, "elapsed_time": "5:48:36", "remaining_time": "1:12:06"} +{"current_steps": 2080, "total_steps": 2509, "loss": 0.7994, "learning_rate": 2.874563908632142e-06, "epoch": 0.8289329480920594, "percentage": 82.9, "elapsed_time": "5:48:46", "remaining_time": "1:11:56"} +{"current_steps": 2081, "total_steps": 2509, "loss": 0.8017, "learning_rate": 2.8615070378115372e-06, "epoch": 0.8293314735478728, "percentage": 82.94, "elapsed_time": "5:48:56", "remaining_time": "1:11:46"} +{"current_steps": 2082, "total_steps": 2509, "loss": 0.784, "learning_rate": 2.848477602869937e-06, "epoch": 0.8297299990036864, "percentage": 82.98, "elapsed_time": "5:49:06", "remaining_time": "1:11:35"} +{"current_steps": 2083, "total_steps": 2509, "loss": 0.769, "learning_rate": 2.8354756246652913e-06, "epoch": 0.8301285244594998, "percentage": 83.02, "elapsed_time": "5:49:16", "remaining_time": "1:11:25"} +{"current_steps": 2084, "total_steps": 2509, "loss": 0.7847, "learning_rate": 2.822501124011612e-06, "epoch": 0.8305270499153133, "percentage": 83.06, "elapsed_time": "5:49:26", "remaining_time": "1:11:15"} +{"current_steps": 2085, "total_steps": 2509, "loss": 0.8032, "learning_rate": 2.809554121678917e-06, "epoch": 0.8309255753711269, "percentage": 83.1, "elapsed_time": "5:49:36", "remaining_time": "1:11:05"} +{"current_steps": 2086, "total_steps": 2509, "loss": 0.7874, "learning_rate": 2.7966346383932076e-06, "epoch": 0.8313241008269403, "percentage": 83.14, "elapsed_time": "5:49:47", "remaining_time": "1:10:55"} +{"current_steps": 2087, "total_steps": 2509, "loss": 0.79, "learning_rate": 2.7837426948364334e-06, "epoch": 0.8317226262827538, "percentage": 83.18, "elapsed_time": "5:49:57", "remaining_time": "1:10:45"} +{"current_steps": 2088, "total_steps": 2509, "loss": 0.7655, "learning_rate": 2.7708783116464435e-06, "epoch": 0.8321211517385673, "percentage": 83.22, "elapsed_time": "5:50:07", "remaining_time": "1:10:35"} +{"current_steps": 2089, "total_steps": 2509, "loss": 0.7839, "learning_rate": 2.7580415094169865e-06, "epoch": 0.8325196771943808, "percentage": 83.26, "elapsed_time": "5:50:17", "remaining_time": "1:10:25"} +{"current_steps": 2090, "total_steps": 2509, "loss": 0.829, "learning_rate": 2.745232308697636e-06, "epoch": 0.8329182026501942, "percentage": 83.3, "elapsed_time": "5:50:27", "remaining_time": "1:10:15"} +{"current_steps": 2091, "total_steps": 2509, "loss": 0.8096, "learning_rate": 2.732450729993814e-06, "epoch": 0.8333167281060078, "percentage": 83.34, "elapsed_time": "5:50:37", "remaining_time": "1:10:05"} +{"current_steps": 2092, "total_steps": 2509, "loss": 0.8039, "learning_rate": 2.7196967937666865e-06, "epoch": 0.8337152535618213, "percentage": 83.38, "elapsed_time": "5:50:47", "remaining_time": "1:09:55"} +{"current_steps": 2093, "total_steps": 2509, "loss": 0.7793, "learning_rate": 2.706970520433192e-06, "epoch": 0.8341137790176347, "percentage": 83.42, "elapsed_time": "5:50:57", "remaining_time": "1:09:45"} +{"current_steps": 2094, "total_steps": 2509, "loss": 0.781, "learning_rate": 2.6942719303659837e-06, "epoch": 0.8345123044734483, "percentage": 83.46, "elapsed_time": "5:51:07", "remaining_time": "1:09:35"} +{"current_steps": 2095, "total_steps": 2509, "loss": 0.781, "learning_rate": 2.681601043893387e-06, "epoch": 0.8349108299292617, "percentage": 83.5, "elapsed_time": "5:51:17", "remaining_time": "1:09:25"} +{"current_steps": 2096, "total_steps": 2509, "loss": 0.7694, "learning_rate": 2.6689578812993857e-06, "epoch": 0.8353093553850752, "percentage": 83.54, "elapsed_time": "5:51:27", "remaining_time": "1:09:15"} +{"current_steps": 2097, "total_steps": 2509, "loss": 0.7848, "learning_rate": 2.6563424628235845e-06, "epoch": 0.8357078808408888, "percentage": 83.58, "elapsed_time": "5:51:37", "remaining_time": "1:09:05"} +{"current_steps": 2098, "total_steps": 2509, "loss": 0.7988, "learning_rate": 2.6437548086611765e-06, "epoch": 0.8361064062967022, "percentage": 83.62, "elapsed_time": "5:51:47", "remaining_time": "1:08:54"} +{"current_steps": 2099, "total_steps": 2509, "loss": 0.8021, "learning_rate": 2.6311949389628956e-06, "epoch": 0.8365049317525157, "percentage": 83.66, "elapsed_time": "5:51:57", "remaining_time": "1:08:44"} +{"current_steps": 2100, "total_steps": 2509, "loss": 0.796, "learning_rate": 2.618662873835007e-06, "epoch": 0.8369034572083291, "percentage": 83.7, "elapsed_time": "5:52:07", "remaining_time": "1:08:34"} +{"current_steps": 2101, "total_steps": 2509, "loss": 0.8025, "learning_rate": 2.6061586333392684e-06, "epoch": 0.8373019826641427, "percentage": 83.74, "elapsed_time": "5:52:17", "remaining_time": "1:08:24"} +{"current_steps": 2102, "total_steps": 2509, "loss": 0.7815, "learning_rate": 2.5936822374928894e-06, "epoch": 0.8377005081199561, "percentage": 83.78, "elapsed_time": "5:52:27", "remaining_time": "1:08:14"} +{"current_steps": 2103, "total_steps": 2509, "loss": 0.802, "learning_rate": 2.581233706268509e-06, "epoch": 0.8380990335757696, "percentage": 83.82, "elapsed_time": "5:52:37", "remaining_time": "1:08:04"} +{"current_steps": 2104, "total_steps": 2509, "loss": 0.7556, "learning_rate": 2.5688130595941486e-06, "epoch": 0.8384975590315832, "percentage": 83.86, "elapsed_time": "5:52:47", "remaining_time": "1:07:54"} +{"current_steps": 2105, "total_steps": 2509, "loss": 0.7889, "learning_rate": 2.55642031735321e-06, "epoch": 0.8388960844873966, "percentage": 83.9, "elapsed_time": "5:52:57", "remaining_time": "1:07:44"} +{"current_steps": 2106, "total_steps": 2509, "loss": 0.8142, "learning_rate": 2.544055499384406e-06, "epoch": 0.8392946099432101, "percentage": 83.94, "elapsed_time": "5:53:07", "remaining_time": "1:07:34"} +{"current_steps": 2107, "total_steps": 2509, "loss": 0.7663, "learning_rate": 2.5317186254817538e-06, "epoch": 0.8396931353990236, "percentage": 83.98, "elapsed_time": "5:53:17", "remaining_time": "1:07:24"} +{"current_steps": 2108, "total_steps": 2509, "loss": 0.7938, "learning_rate": 2.519409715394545e-06, "epoch": 0.8400916608548371, "percentage": 84.02, "elapsed_time": "5:53:27", "remaining_time": "1:07:14"} +{"current_steps": 2109, "total_steps": 2509, "loss": 0.8051, "learning_rate": 2.5071287888272953e-06, "epoch": 0.8404901863106506, "percentage": 84.06, "elapsed_time": "5:53:37", "remaining_time": "1:07:04"} +{"current_steps": 2110, "total_steps": 2509, "loss": 0.7833, "learning_rate": 2.4948758654397342e-06, "epoch": 0.8408887117664641, "percentage": 84.1, "elapsed_time": "5:53:47", "remaining_time": "1:06:54"} +{"current_steps": 2111, "total_steps": 2509, "loss": 0.7742, "learning_rate": 2.4826509648467424e-06, "epoch": 0.8412872372222776, "percentage": 84.14, "elapsed_time": "5:53:58", "remaining_time": "1:06:44"} +{"current_steps": 2112, "total_steps": 2509, "loss": 0.7857, "learning_rate": 2.470454106618363e-06, "epoch": 0.841685762678091, "percentage": 84.18, "elapsed_time": "5:54:08", "remaining_time": "1:06:34"} +{"current_steps": 2113, "total_steps": 2509, "loss": 0.7997, "learning_rate": 2.458285310279738e-06, "epoch": 0.8420842881339046, "percentage": 84.22, "elapsed_time": "5:54:18", "remaining_time": "1:06:24"} +{"current_steps": 2114, "total_steps": 2509, "loss": 0.8014, "learning_rate": 2.4461445953110862e-06, "epoch": 0.842482813589718, "percentage": 84.26, "elapsed_time": "5:54:28", "remaining_time": "1:06:13"} +{"current_steps": 2115, "total_steps": 2509, "loss": 0.774, "learning_rate": 2.43403198114768e-06, "epoch": 0.8428813390455315, "percentage": 84.3, "elapsed_time": "5:54:38", "remaining_time": "1:06:03"} +{"current_steps": 2116, "total_steps": 2509, "loss": 0.7856, "learning_rate": 2.4219474871797942e-06, "epoch": 0.8432798645013451, "percentage": 84.34, "elapsed_time": "5:54:48", "remaining_time": "1:05:53"} +{"current_steps": 2117, "total_steps": 2509, "loss": 0.8102, "learning_rate": 2.409891132752702e-06, "epoch": 0.8436783899571585, "percentage": 84.38, "elapsed_time": "5:54:58", "remaining_time": "1:05:43"} +{"current_steps": 2118, "total_steps": 2509, "loss": 0.7853, "learning_rate": 2.3978629371666174e-06, "epoch": 0.844076915412972, "percentage": 84.42, "elapsed_time": "5:55:08", "remaining_time": "1:05:33"} +{"current_steps": 2119, "total_steps": 2509, "loss": 0.7877, "learning_rate": 2.3858629196766846e-06, "epoch": 0.8444754408687855, "percentage": 84.46, "elapsed_time": "5:55:18", "remaining_time": "1:05:23"} +{"current_steps": 2120, "total_steps": 2509, "loss": 0.766, "learning_rate": 2.3738910994929353e-06, "epoch": 0.844873966324599, "percentage": 84.5, "elapsed_time": "5:55:28", "remaining_time": "1:05:13"} +{"current_steps": 2121, "total_steps": 2509, "loss": 0.7731, "learning_rate": 2.36194749578027e-06, "epoch": 0.8452724917804125, "percentage": 84.54, "elapsed_time": "5:55:38", "remaining_time": "1:05:03"} +{"current_steps": 2122, "total_steps": 2509, "loss": 0.796, "learning_rate": 2.3500321276584103e-06, "epoch": 0.845671017236226, "percentage": 84.58, "elapsed_time": "5:55:48", "remaining_time": "1:04:53"} +{"current_steps": 2123, "total_steps": 2509, "loss": 0.8096, "learning_rate": 2.338145014201878e-06, "epoch": 0.8460695426920395, "percentage": 84.62, "elapsed_time": "5:55:58", "remaining_time": "1:04:43"} +{"current_steps": 2124, "total_steps": 2509, "loss": 0.7997, "learning_rate": 2.326286174439969e-06, "epoch": 0.8464680681478529, "percentage": 84.66, "elapsed_time": "5:56:08", "remaining_time": "1:04:33"} +{"current_steps": 2125, "total_steps": 2509, "loss": 0.7607, "learning_rate": 2.3144556273567132e-06, "epoch": 0.8468665936036665, "percentage": 84.7, "elapsed_time": "5:56:18", "remaining_time": "1:04:23"} +{"current_steps": 2126, "total_steps": 2509, "loss": 0.7804, "learning_rate": 2.30265339189085e-06, "epoch": 0.8472651190594799, "percentage": 84.73, "elapsed_time": "5:56:28", "remaining_time": "1:04:13"} +{"current_steps": 2127, "total_steps": 2509, "loss": 0.7648, "learning_rate": 2.2908794869358044e-06, "epoch": 0.8476636445152934, "percentage": 84.77, "elapsed_time": "5:56:38", "remaining_time": "1:04:03"} +{"current_steps": 2128, "total_steps": 2509, "loss": 0.801, "learning_rate": 2.27913393133963e-06, "epoch": 0.848062169971107, "percentage": 84.81, "elapsed_time": "5:56:48", "remaining_time": "1:03:53"} +{"current_steps": 2129, "total_steps": 2509, "loss": 0.7998, "learning_rate": 2.267416743905018e-06, "epoch": 0.8484606954269204, "percentage": 84.85, "elapsed_time": "5:56:58", "remaining_time": "1:03:43"} +{"current_steps": 2130, "total_steps": 2509, "loss": 0.7829, "learning_rate": 2.255727943389232e-06, "epoch": 0.8488592208827339, "percentage": 84.89, "elapsed_time": "5:57:08", "remaining_time": "1:03:32"} +{"current_steps": 2131, "total_steps": 2509, "loss": 0.7689, "learning_rate": 2.244067548504101e-06, "epoch": 0.8492577463385473, "percentage": 84.93, "elapsed_time": "5:57:19", "remaining_time": "1:03:22"} +{"current_steps": 2132, "total_steps": 2509, "loss": 0.7841, "learning_rate": 2.232435577915981e-06, "epoch": 0.8496562717943609, "percentage": 84.97, "elapsed_time": "5:57:29", "remaining_time": "1:03:12"} +{"current_steps": 2133, "total_steps": 2509, "loss": 0.7743, "learning_rate": 2.2208320502457247e-06, "epoch": 0.8500547972501744, "percentage": 85.01, "elapsed_time": "5:57:39", "remaining_time": "1:03:02"} +{"current_steps": 2134, "total_steps": 2509, "loss": 0.8186, "learning_rate": 2.209256984068653e-06, "epoch": 0.8504533227059878, "percentage": 85.05, "elapsed_time": "5:57:49", "remaining_time": "1:02:52"} +{"current_steps": 2135, "total_steps": 2509, "loss": 0.7873, "learning_rate": 2.1977103979145144e-06, "epoch": 0.8508518481618014, "percentage": 85.09, "elapsed_time": "5:57:59", "remaining_time": "1:02:42"} +{"current_steps": 2136, "total_steps": 2509, "loss": 0.7962, "learning_rate": 2.186192310267481e-06, "epoch": 0.8512503736176148, "percentage": 85.13, "elapsed_time": "5:58:09", "remaining_time": "1:02:32"} +{"current_steps": 2137, "total_steps": 2509, "loss": 0.7875, "learning_rate": 2.174702739566097e-06, "epoch": 0.8516488990734283, "percentage": 85.17, "elapsed_time": "5:58:19", "remaining_time": "1:02:22"} +{"current_steps": 2138, "total_steps": 2509, "loss": 0.799, "learning_rate": 2.1632417042032582e-06, "epoch": 0.8520474245292418, "percentage": 85.21, "elapsed_time": "5:58:29", "remaining_time": "1:02:12"} +{"current_steps": 2139, "total_steps": 2509, "loss": 0.8012, "learning_rate": 2.151809222526171e-06, "epoch": 0.8524459499850553, "percentage": 85.25, "elapsed_time": "5:58:39", "remaining_time": "1:02:02"} +{"current_steps": 2140, "total_steps": 2509, "loss": 0.8034, "learning_rate": 2.140405312836342e-06, "epoch": 0.8528444754408688, "percentage": 85.29, "elapsed_time": "5:58:49", "remaining_time": "1:01:52"} +{"current_steps": 2141, "total_steps": 2509, "loss": 0.8056, "learning_rate": 2.1290299933895375e-06, "epoch": 0.8532430008966823, "percentage": 85.33, "elapsed_time": "5:58:59", "remaining_time": "1:01:42"} +{"current_steps": 2142, "total_steps": 2509, "loss": 0.7777, "learning_rate": 2.1176832823957437e-06, "epoch": 0.8536415263524958, "percentage": 85.37, "elapsed_time": "5:59:09", "remaining_time": "1:01:32"} +{"current_steps": 2143, "total_steps": 2509, "loss": 0.7915, "learning_rate": 2.1063651980191735e-06, "epoch": 0.8540400518083092, "percentage": 85.41, "elapsed_time": "5:59:19", "remaining_time": "1:01:22"} +{"current_steps": 2144, "total_steps": 2509, "loss": 0.8095, "learning_rate": 2.095075758378191e-06, "epoch": 0.8544385772641228, "percentage": 85.45, "elapsed_time": "5:59:29", "remaining_time": "1:01:12"} +{"current_steps": 2145, "total_steps": 2509, "loss": 0.8003, "learning_rate": 2.083814981545316e-06, "epoch": 0.8548371027199362, "percentage": 85.49, "elapsed_time": "5:59:40", "remaining_time": "1:01:02"} +{"current_steps": 2146, "total_steps": 2509, "loss": 0.8048, "learning_rate": 2.0725828855471743e-06, "epoch": 0.8552356281757497, "percentage": 85.53, "elapsed_time": "5:59:50", "remaining_time": "1:00:52"} +{"current_steps": 2147, "total_steps": 2509, "loss": 0.8056, "learning_rate": 2.06137948836449e-06, "epoch": 0.8556341536315633, "percentage": 85.57, "elapsed_time": "6:00:00", "remaining_time": "1:00:41"} +{"current_steps": 2148, "total_steps": 2509, "loss": 0.7719, "learning_rate": 2.0502048079320412e-06, "epoch": 0.8560326790873767, "percentage": 85.61, "elapsed_time": "6:00:10", "remaining_time": "1:00:31"} +{"current_steps": 2149, "total_steps": 2509, "loss": 0.8124, "learning_rate": 2.03905886213863e-06, "epoch": 0.8564312045431902, "percentage": 85.65, "elapsed_time": "6:00:20", "remaining_time": "1:00:21"} +{"current_steps": 2150, "total_steps": 2509, "loss": 0.8042, "learning_rate": 2.0279416688270714e-06, "epoch": 0.8568297299990036, "percentage": 85.69, "elapsed_time": "6:00:30", "remaining_time": "1:00:11"} +{"current_steps": 2151, "total_steps": 2509, "loss": 0.7817, "learning_rate": 2.0168532457941347e-06, "epoch": 0.8572282554548172, "percentage": 85.73, "elapsed_time": "6:00:40", "remaining_time": "1:00:01"} +{"current_steps": 2152, "total_steps": 2509, "loss": 0.7872, "learning_rate": 2.0057936107905496e-06, "epoch": 0.8576267809106307, "percentage": 85.77, "elapsed_time": "6:00:50", "remaining_time": "0:59:51"} +{"current_steps": 2153, "total_steps": 2509, "loss": 0.7959, "learning_rate": 1.994762781520947e-06, "epoch": 0.8580253063664441, "percentage": 85.81, "elapsed_time": "6:01:00", "remaining_time": "0:59:41"} +{"current_steps": 2154, "total_steps": 2509, "loss": 0.7957, "learning_rate": 1.9837607756438506e-06, "epoch": 0.8584238318222577, "percentage": 85.85, "elapsed_time": "6:01:10", "remaining_time": "0:59:31"} +{"current_steps": 2155, "total_steps": 2509, "loss": 0.7728, "learning_rate": 1.972787610771656e-06, "epoch": 0.8588223572780711, "percentage": 85.89, "elapsed_time": "6:01:20", "remaining_time": "0:59:21"} +{"current_steps": 2156, "total_steps": 2509, "loss": 0.7943, "learning_rate": 1.9618433044705653e-06, "epoch": 0.8592208827338846, "percentage": 85.93, "elapsed_time": "6:01:30", "remaining_time": "0:59:11"} +{"current_steps": 2157, "total_steps": 2509, "loss": 0.8152, "learning_rate": 1.9509278742605998e-06, "epoch": 0.8596194081896981, "percentage": 85.97, "elapsed_time": "6:01:40", "remaining_time": "0:59:01"} +{"current_steps": 2158, "total_steps": 2509, "loss": 0.7718, "learning_rate": 1.9400413376155414e-06, "epoch": 0.8600179336455116, "percentage": 86.01, "elapsed_time": "6:01:50", "remaining_time": "0:58:51"} +{"current_steps": 2159, "total_steps": 2509, "loss": 0.8166, "learning_rate": 1.929183711962932e-06, "epoch": 0.8604164591013251, "percentage": 86.05, "elapsed_time": "6:02:00", "remaining_time": "0:58:41"} +{"current_steps": 2160, "total_steps": 2509, "loss": 0.8116, "learning_rate": 1.918355014684026e-06, "epoch": 0.8608149845571386, "percentage": 86.09, "elapsed_time": "6:02:10", "remaining_time": "0:58:31"} +{"current_steps": 2161, "total_steps": 2509, "loss": 0.828, "learning_rate": 1.9075552631137673e-06, "epoch": 0.8612135100129521, "percentage": 86.13, "elapsed_time": "6:02:20", "remaining_time": "0:58:21"} +{"current_steps": 2162, "total_steps": 2509, "loss": 0.8162, "learning_rate": 1.8967844745407649e-06, "epoch": 0.8616120354687655, "percentage": 86.17, "elapsed_time": "6:02:31", "remaining_time": "0:58:11"} +{"current_steps": 2163, "total_steps": 2509, "loss": 0.7646, "learning_rate": 1.8860426662072573e-06, "epoch": 0.8620105609245791, "percentage": 86.21, "elapsed_time": "6:02:41", "remaining_time": "0:58:00"} +{"current_steps": 2164, "total_steps": 2509, "loss": 0.7662, "learning_rate": 1.8753298553091004e-06, "epoch": 0.8624090863803926, "percentage": 86.25, "elapsed_time": "6:02:51", "remaining_time": "0:57:50"} +{"current_steps": 2165, "total_steps": 2509, "loss": 0.7675, "learning_rate": 1.8646460589957138e-06, "epoch": 0.862807611836206, "percentage": 86.29, "elapsed_time": "6:03:01", "remaining_time": "0:57:40"} +{"current_steps": 2166, "total_steps": 2509, "loss": 0.8162, "learning_rate": 1.8539912943700921e-06, "epoch": 0.8632061372920196, "percentage": 86.33, "elapsed_time": "6:03:11", "remaining_time": "0:57:30"} +{"current_steps": 2167, "total_steps": 2509, "loss": 0.786, "learning_rate": 1.8433655784887338e-06, "epoch": 0.863604662747833, "percentage": 86.37, "elapsed_time": "6:03:21", "remaining_time": "0:57:20"} +{"current_steps": 2168, "total_steps": 2509, "loss": 0.8033, "learning_rate": 1.832768928361648e-06, "epoch": 0.8640031882036465, "percentage": 86.41, "elapsed_time": "6:03:31", "remaining_time": "0:57:10"} +{"current_steps": 2169, "total_steps": 2509, "loss": 0.7856, "learning_rate": 1.8222013609523138e-06, "epoch": 0.86440171365946, "percentage": 86.45, "elapsed_time": "6:03:41", "remaining_time": "0:57:00"} +{"current_steps": 2170, "total_steps": 2509, "loss": 0.8434, "learning_rate": 1.8116628931776437e-06, "epoch": 0.8648002391152735, "percentage": 86.49, "elapsed_time": "6:03:51", "remaining_time": "0:56:50"} +{"current_steps": 2171, "total_steps": 2509, "loss": 0.7698, "learning_rate": 1.801153541907974e-06, "epoch": 0.865198764571087, "percentage": 86.53, "elapsed_time": "6:04:01", "remaining_time": "0:56:40"} +{"current_steps": 2172, "total_steps": 2509, "loss": 0.772, "learning_rate": 1.7906733239670338e-06, "epoch": 0.8655972900269004, "percentage": 86.57, "elapsed_time": "6:04:11", "remaining_time": "0:56:30"} +{"current_steps": 2173, "total_steps": 2509, "loss": 0.7581, "learning_rate": 1.7802222561319116e-06, "epoch": 0.865995815482714, "percentage": 86.61, "elapsed_time": "6:04:21", "remaining_time": "0:56:20"} +{"current_steps": 2174, "total_steps": 2509, "loss": 0.7944, "learning_rate": 1.7698003551330222e-06, "epoch": 0.8663943409385274, "percentage": 86.65, "elapsed_time": "6:04:31", "remaining_time": "0:56:10"} +{"current_steps": 2175, "total_steps": 2509, "loss": 0.8066, "learning_rate": 1.7594076376541025e-06, "epoch": 0.8667928663943409, "percentage": 86.69, "elapsed_time": "6:04:41", "remaining_time": "0:56:00"} +{"current_steps": 2176, "total_steps": 2509, "loss": 0.7721, "learning_rate": 1.749044120332164e-06, "epoch": 0.8671913918501545, "percentage": 86.73, "elapsed_time": "6:04:51", "remaining_time": "0:55:50"} +{"current_steps": 2177, "total_steps": 2509, "loss": 0.8084, "learning_rate": 1.7387098197574782e-06, "epoch": 0.8675899173059679, "percentage": 86.77, "elapsed_time": "6:05:01", "remaining_time": "0:55:40"} +{"current_steps": 2178, "total_steps": 2509, "loss": 0.7925, "learning_rate": 1.7284047524735426e-06, "epoch": 0.8679884427617814, "percentage": 86.81, "elapsed_time": "6:05:11", "remaining_time": "0:55:30"} +{"current_steps": 2179, "total_steps": 2509, "loss": 0.7811, "learning_rate": 1.7181289349770547e-06, "epoch": 0.8683869682175949, "percentage": 86.85, "elapsed_time": "6:05:21", "remaining_time": "0:55:19"} +{"current_steps": 2180, "total_steps": 2509, "loss": 0.7678, "learning_rate": 1.707882383717896e-06, "epoch": 0.8687854936734084, "percentage": 86.89, "elapsed_time": "6:05:31", "remaining_time": "0:55:09"} +{"current_steps": 2181, "total_steps": 2509, "loss": 0.7942, "learning_rate": 1.697665115099083e-06, "epoch": 0.8691840191292218, "percentage": 86.93, "elapsed_time": "6:05:41", "remaining_time": "0:54:59"} +{"current_steps": 2182, "total_steps": 2509, "loss": 0.7824, "learning_rate": 1.6874771454767723e-06, "epoch": 0.8695825445850354, "percentage": 86.97, "elapsed_time": "6:05:52", "remaining_time": "0:54:49"} +{"current_steps": 2183, "total_steps": 2509, "loss": 0.7928, "learning_rate": 1.677318491160207e-06, "epoch": 0.8699810700408489, "percentage": 87.01, "elapsed_time": "6:06:02", "remaining_time": "0:54:39"} +{"current_steps": 2184, "total_steps": 2509, "loss": 0.827, "learning_rate": 1.6671891684117048e-06, "epoch": 0.8703795954966623, "percentage": 87.05, "elapsed_time": "6:06:12", "remaining_time": "0:54:29"} +{"current_steps": 2185, "total_steps": 2509, "loss": 0.8059, "learning_rate": 1.6570891934466304e-06, "epoch": 0.8707781209524759, "percentage": 87.09, "elapsed_time": "6:06:22", "remaining_time": "0:54:19"} +{"current_steps": 2186, "total_steps": 2509, "loss": 0.7976, "learning_rate": 1.6470185824333617e-06, "epoch": 0.8711766464082893, "percentage": 87.13, "elapsed_time": "6:06:32", "remaining_time": "0:54:09"} +{"current_steps": 2187, "total_steps": 2509, "loss": 0.7653, "learning_rate": 1.6369773514932786e-06, "epoch": 0.8715751718641028, "percentage": 87.17, "elapsed_time": "6:06:42", "remaining_time": "0:53:59"} +{"current_steps": 2188, "total_steps": 2509, "loss": 0.7824, "learning_rate": 1.6269655167007136e-06, "epoch": 0.8719736973199164, "percentage": 87.21, "elapsed_time": "6:06:52", "remaining_time": "0:53:49"} +{"current_steps": 2189, "total_steps": 2509, "loss": 0.8068, "learning_rate": 1.6169830940829578e-06, "epoch": 0.8723722227757298, "percentage": 87.25, "elapsed_time": "6:07:02", "remaining_time": "0:53:39"} +{"current_steps": 2190, "total_steps": 2509, "loss": 0.7989, "learning_rate": 1.6070300996202126e-06, "epoch": 0.8727707482315433, "percentage": 87.29, "elapsed_time": "6:07:12", "remaining_time": "0:53:29"} +{"current_steps": 2191, "total_steps": 2509, "loss": 0.7636, "learning_rate": 1.5971065492455617e-06, "epoch": 0.8731692736873568, "percentage": 87.33, "elapsed_time": "6:07:22", "remaining_time": "0:53:19"} +{"current_steps": 2192, "total_steps": 2509, "loss": 0.7659, "learning_rate": 1.5872124588449667e-06, "epoch": 0.8735677991431703, "percentage": 87.37, "elapsed_time": "6:07:32", "remaining_time": "0:53:09"} +{"current_steps": 2193, "total_steps": 2509, "loss": 0.7934, "learning_rate": 1.5773478442572154e-06, "epoch": 0.8739663245989837, "percentage": 87.41, "elapsed_time": "6:07:42", "remaining_time": "0:52:59"} +{"current_steps": 2194, "total_steps": 2509, "loss": 0.7905, "learning_rate": 1.5675127212739183e-06, "epoch": 0.8743648500547972, "percentage": 87.45, "elapsed_time": "6:07:52", "remaining_time": "0:52:49"} +{"current_steps": 2195, "total_steps": 2509, "loss": 0.7862, "learning_rate": 1.5577071056394743e-06, "epoch": 0.8747633755106108, "percentage": 87.49, "elapsed_time": "6:08:02", "remaining_time": "0:52:38"} +{"current_steps": 2196, "total_steps": 2509, "loss": 0.7845, "learning_rate": 1.5479310130510428e-06, "epoch": 0.8751619009664242, "percentage": 87.52, "elapsed_time": "6:08:12", "remaining_time": "0:52:28"} +{"current_steps": 2197, "total_steps": 2509, "loss": 0.7957, "learning_rate": 1.5381844591585294e-06, "epoch": 0.8755604264222377, "percentage": 87.56, "elapsed_time": "6:08:22", "remaining_time": "0:52:18"} +{"current_steps": 2198, "total_steps": 2509, "loss": 0.7963, "learning_rate": 1.5284674595645376e-06, "epoch": 0.8759589518780512, "percentage": 87.6, "elapsed_time": "6:08:32", "remaining_time": "0:52:08"} +{"current_steps": 2199, "total_steps": 2509, "loss": 0.7782, "learning_rate": 1.518780029824376e-06, "epoch": 0.8763574773338647, "percentage": 87.64, "elapsed_time": "6:08:42", "remaining_time": "0:51:58"} +{"current_steps": 2200, "total_steps": 2509, "loss": 0.7975, "learning_rate": 1.5091221854460037e-06, "epoch": 0.8767560027896782, "percentage": 87.68, "elapsed_time": "6:08:53", "remaining_time": "0:51:48"} +{"current_steps": 2201, "total_steps": 2509, "loss": 0.7829, "learning_rate": 1.4994939418900334e-06, "epoch": 0.8771545282454917, "percentage": 87.72, "elapsed_time": "6:09:03", "remaining_time": "0:51:38"} +{"current_steps": 2202, "total_steps": 2509, "loss": 0.7982, "learning_rate": 1.4898953145696738e-06, "epoch": 0.8775530537013052, "percentage": 87.76, "elapsed_time": "6:09:13", "remaining_time": "0:51:28"} +{"current_steps": 2203, "total_steps": 2509, "loss": 0.7954, "learning_rate": 1.4803263188507377e-06, "epoch": 0.8779515791571186, "percentage": 87.8, "elapsed_time": "6:09:23", "remaining_time": "0:51:18"} +{"current_steps": 2204, "total_steps": 2509, "loss": 0.784, "learning_rate": 1.4707869700515965e-06, "epoch": 0.8783501046129322, "percentage": 87.84, "elapsed_time": "6:09:33", "remaining_time": "0:51:08"} +{"current_steps": 2205, "total_steps": 2509, "loss": 0.7569, "learning_rate": 1.4612772834431566e-06, "epoch": 0.8787486300687456, "percentage": 87.88, "elapsed_time": "6:09:43", "remaining_time": "0:50:58"} +{"current_steps": 2206, "total_steps": 2509, "loss": 0.7872, "learning_rate": 1.4517972742488518e-06, "epoch": 0.8791471555245591, "percentage": 87.92, "elapsed_time": "6:09:53", "remaining_time": "0:50:48"} +{"current_steps": 2207, "total_steps": 2509, "loss": 0.7815, "learning_rate": 1.4423469576446002e-06, "epoch": 0.8795456809803727, "percentage": 87.96, "elapsed_time": "6:10:03", "remaining_time": "0:50:38"} +{"current_steps": 2208, "total_steps": 2509, "loss": 0.8205, "learning_rate": 1.4329263487587896e-06, "epoch": 0.8799442064361861, "percentage": 88.0, "elapsed_time": "6:10:13", "remaining_time": "0:50:28"} +{"current_steps": 2209, "total_steps": 2509, "loss": 0.8121, "learning_rate": 1.4235354626722431e-06, "epoch": 0.8803427318919996, "percentage": 88.04, "elapsed_time": "6:10:23", "remaining_time": "0:50:18"} +{"current_steps": 2210, "total_steps": 2509, "loss": 0.7813, "learning_rate": 1.4141743144182153e-06, "epoch": 0.8807412573478131, "percentage": 88.08, "elapsed_time": "6:10:33", "remaining_time": "0:50:08"} +{"current_steps": 2211, "total_steps": 2509, "loss": 0.7455, "learning_rate": 1.4048429189823432e-06, "epoch": 0.8811397828036266, "percentage": 88.12, "elapsed_time": "6:10:43", "remaining_time": "0:49:57"} +{"current_steps": 2212, "total_steps": 2509, "loss": 0.7662, "learning_rate": 1.3955412913026468e-06, "epoch": 0.88153830825944, "percentage": 88.16, "elapsed_time": "6:10:53", "remaining_time": "0:49:47"} +{"current_steps": 2213, "total_steps": 2509, "loss": 0.7835, "learning_rate": 1.3862694462694836e-06, "epoch": 0.8819368337152536, "percentage": 88.2, "elapsed_time": "6:11:03", "remaining_time": "0:49:37"} +{"current_steps": 2214, "total_steps": 2509, "loss": 0.7869, "learning_rate": 1.3770273987255322e-06, "epoch": 0.8823353591710671, "percentage": 88.24, "elapsed_time": "6:11:13", "remaining_time": "0:49:27"} +{"current_steps": 2215, "total_steps": 2509, "loss": 0.7903, "learning_rate": 1.36781516346578e-06, "epoch": 0.8827338846268805, "percentage": 88.28, "elapsed_time": "6:11:23", "remaining_time": "0:49:17"} +{"current_steps": 2216, "total_steps": 2509, "loss": 0.7966, "learning_rate": 1.3586327552374834e-06, "epoch": 0.883132410082694, "percentage": 88.32, "elapsed_time": "6:11:33", "remaining_time": "0:49:07"} +{"current_steps": 2217, "total_steps": 2509, "loss": 0.7845, "learning_rate": 1.349480188740151e-06, "epoch": 0.8835309355385075, "percentage": 88.36, "elapsed_time": "6:11:43", "remaining_time": "0:48:57"} +{"current_steps": 2218, "total_steps": 2509, "loss": 0.8267, "learning_rate": 1.3403574786255203e-06, "epoch": 0.883929460994321, "percentage": 88.4, "elapsed_time": "6:11:53", "remaining_time": "0:48:47"} +{"current_steps": 2219, "total_steps": 2509, "loss": 0.7844, "learning_rate": 1.3312646394975336e-06, "epoch": 0.8843279864501346, "percentage": 88.44, "elapsed_time": "6:12:03", "remaining_time": "0:48:37"} +{"current_steps": 2220, "total_steps": 2509, "loss": 0.7561, "learning_rate": 1.322201685912321e-06, "epoch": 0.884726511905948, "percentage": 88.48, "elapsed_time": "6:12:13", "remaining_time": "0:48:27"} +{"current_steps": 2221, "total_steps": 2509, "loss": 0.7827, "learning_rate": 1.3131686323781567e-06, "epoch": 0.8851250373617615, "percentage": 88.52, "elapsed_time": "6:12:23", "remaining_time": "0:48:17"} +{"current_steps": 2222, "total_steps": 2509, "loss": 0.8035, "learning_rate": 1.3041654933554627e-06, "epoch": 0.8855235628175749, "percentage": 88.56, "elapsed_time": "6:12:33", "remaining_time": "0:48:07"} +{"current_steps": 2223, "total_steps": 2509, "loss": 0.7944, "learning_rate": 1.2951922832567676e-06, "epoch": 0.8859220882733885, "percentage": 88.6, "elapsed_time": "6:12:43", "remaining_time": "0:47:57"} +{"current_steps": 2224, "total_steps": 2509, "loss": 0.8167, "learning_rate": 1.28624901644669e-06, "epoch": 0.8863206137292019, "percentage": 88.64, "elapsed_time": "6:12:53", "remaining_time": "0:47:47"} +{"current_steps": 2225, "total_steps": 2509, "loss": 0.7721, "learning_rate": 1.2773357072419156e-06, "epoch": 0.8867191391850154, "percentage": 88.68, "elapsed_time": "6:13:03", "remaining_time": "0:47:37"} +{"current_steps": 2226, "total_steps": 2509, "loss": 0.7898, "learning_rate": 1.2684523699111683e-06, "epoch": 0.887117664640829, "percentage": 88.72, "elapsed_time": "6:13:13", "remaining_time": "0:47:27"} +{"current_steps": 2227, "total_steps": 2509, "loss": 0.7751, "learning_rate": 1.259599018675197e-06, "epoch": 0.8875161900966424, "percentage": 88.76, "elapsed_time": "6:13:23", "remaining_time": "0:47:16"} +{"current_steps": 2228, "total_steps": 2509, "loss": 0.7937, "learning_rate": 1.2507756677067407e-06, "epoch": 0.8879147155524559, "percentage": 88.8, "elapsed_time": "6:13:33", "remaining_time": "0:47:06"} +{"current_steps": 2229, "total_steps": 2509, "loss": 0.7834, "learning_rate": 1.241982331130518e-06, "epoch": 0.8883132410082694, "percentage": 88.84, "elapsed_time": "6:13:44", "remaining_time": "0:46:56"} +{"current_steps": 2230, "total_steps": 2509, "loss": 0.7964, "learning_rate": 1.233219023023211e-06, "epoch": 0.8887117664640829, "percentage": 88.88, "elapsed_time": "6:13:54", "remaining_time": "0:46:46"} +{"current_steps": 2231, "total_steps": 2509, "loss": 0.8145, "learning_rate": 1.2244857574134073e-06, "epoch": 0.8891102919198964, "percentage": 88.92, "elapsed_time": "6:14:04", "remaining_time": "0:46:36"} +{"current_steps": 2232, "total_steps": 2509, "loss": 0.7978, "learning_rate": 1.215782548281621e-06, "epoch": 0.8895088173757099, "percentage": 88.96, "elapsed_time": "6:14:14", "remaining_time": "0:46:26"} +{"current_steps": 2233, "total_steps": 2509, "loss": 0.7688, "learning_rate": 1.2071094095602388e-06, "epoch": 0.8899073428315234, "percentage": 89.0, "elapsed_time": "6:14:24", "remaining_time": "0:46:16"} +{"current_steps": 2234, "total_steps": 2509, "loss": 0.7985, "learning_rate": 1.198466355133514e-06, "epoch": 0.8903058682873368, "percentage": 89.04, "elapsed_time": "6:14:34", "remaining_time": "0:46:06"} +{"current_steps": 2235, "total_steps": 2509, "loss": 0.7776, "learning_rate": 1.1898533988375438e-06, "epoch": 0.8907043937431504, "percentage": 89.08, "elapsed_time": "6:14:44", "remaining_time": "0:45:56"} +{"current_steps": 2236, "total_steps": 2509, "loss": 0.7781, "learning_rate": 1.1812705544602387e-06, "epoch": 0.8911029191989638, "percentage": 89.12, "elapsed_time": "6:14:54", "remaining_time": "0:45:46"} +{"current_steps": 2237, "total_steps": 2509, "loss": 0.7966, "learning_rate": 1.1727178357413082e-06, "epoch": 0.8915014446547773, "percentage": 89.16, "elapsed_time": "6:15:04", "remaining_time": "0:45:36"} +{"current_steps": 2238, "total_steps": 2509, "loss": 0.7875, "learning_rate": 1.1641952563722292e-06, "epoch": 0.8918999701105909, "percentage": 89.2, "elapsed_time": "6:15:14", "remaining_time": "0:45:26"} +{"current_steps": 2239, "total_steps": 2509, "loss": 0.7949, "learning_rate": 1.155702829996239e-06, "epoch": 0.8922984955664043, "percentage": 89.24, "elapsed_time": "6:15:24", "remaining_time": "0:45:16"} +{"current_steps": 2240, "total_steps": 2509, "loss": 0.8169, "learning_rate": 1.1472405702082966e-06, "epoch": 0.8926970210222178, "percentage": 89.28, "elapsed_time": "6:15:34", "remaining_time": "0:45:06"} +{"current_steps": 2241, "total_steps": 2509, "loss": 0.7913, "learning_rate": 1.1388084905550767e-06, "epoch": 0.8930955464780312, "percentage": 89.32, "elapsed_time": "6:15:44", "remaining_time": "0:44:56"} +{"current_steps": 2242, "total_steps": 2509, "loss": 0.7759, "learning_rate": 1.1304066045349371e-06, "epoch": 0.8934940719338448, "percentage": 89.36, "elapsed_time": "6:15:54", "remaining_time": "0:44:46"} +{"current_steps": 2243, "total_steps": 2509, "loss": 0.8375, "learning_rate": 1.1220349255978991e-06, "epoch": 0.8938925973896583, "percentage": 89.4, "elapsed_time": "6:16:04", "remaining_time": "0:44:35"} +{"current_steps": 2244, "total_steps": 2509, "loss": 0.7732, "learning_rate": 1.1136934671456356e-06, "epoch": 0.8942911228454717, "percentage": 89.44, "elapsed_time": "6:16:14", "remaining_time": "0:44:25"} +{"current_steps": 2245, "total_steps": 2509, "loss": 0.7787, "learning_rate": 1.1053822425314253e-06, "epoch": 0.8946896483012853, "percentage": 89.48, "elapsed_time": "6:16:24", "remaining_time": "0:44:15"} +{"current_steps": 2246, "total_steps": 2509, "loss": 0.7856, "learning_rate": 1.0971012650601653e-06, "epoch": 0.8950881737570987, "percentage": 89.52, "elapsed_time": "6:16:35", "remaining_time": "0:44:05"} +{"current_steps": 2247, "total_steps": 2509, "loss": 0.8141, "learning_rate": 1.0888505479883226e-06, "epoch": 0.8954866992129122, "percentage": 89.56, "elapsed_time": "6:16:45", "remaining_time": "0:43:55"} +{"current_steps": 2248, "total_steps": 2509, "loss": 0.776, "learning_rate": 1.0806301045239253e-06, "epoch": 0.8958852246687257, "percentage": 89.6, "elapsed_time": "6:16:55", "remaining_time": "0:43:45"} +{"current_steps": 2249, "total_steps": 2509, "loss": 0.7968, "learning_rate": 1.0724399478265312e-06, "epoch": 0.8962837501245392, "percentage": 89.64, "elapsed_time": "6:17:05", "remaining_time": "0:43:35"} +{"current_steps": 2250, "total_steps": 2509, "loss": 0.7982, "learning_rate": 1.064280091007226e-06, "epoch": 0.8966822755803527, "percentage": 89.68, "elapsed_time": "6:17:15", "remaining_time": "0:43:25"} +{"current_steps": 2251, "total_steps": 2509, "loss": 0.7812, "learning_rate": 1.056150547128585e-06, "epoch": 0.8970808010361662, "percentage": 89.72, "elapsed_time": "6:17:25", "remaining_time": "0:43:15"} +{"current_steps": 2252, "total_steps": 2509, "loss": 0.7749, "learning_rate": 1.048051329204649e-06, "epoch": 0.8974793264919797, "percentage": 89.76, "elapsed_time": "6:17:35", "remaining_time": "0:43:05"} +{"current_steps": 2253, "total_steps": 2509, "loss": 0.817, "learning_rate": 1.0399824502009292e-06, "epoch": 0.8978778519477931, "percentage": 89.8, "elapsed_time": "6:17:45", "remaining_time": "0:42:55"} +{"current_steps": 2254, "total_steps": 2509, "loss": 0.7829, "learning_rate": 1.0319439230343552e-06, "epoch": 0.8982763774036067, "percentage": 89.84, "elapsed_time": "6:17:55", "remaining_time": "0:42:45"} +{"current_steps": 2255, "total_steps": 2509, "loss": 0.7854, "learning_rate": 1.023935760573278e-06, "epoch": 0.8986749028594202, "percentage": 89.88, "elapsed_time": "6:18:05", "remaining_time": "0:42:35"} +{"current_steps": 2256, "total_steps": 2509, "loss": 0.8021, "learning_rate": 1.0159579756374272e-06, "epoch": 0.8990734283152336, "percentage": 89.92, "elapsed_time": "6:18:15", "remaining_time": "0:42:25"} +{"current_steps": 2257, "total_steps": 2509, "loss": 0.7983, "learning_rate": 1.0080105809979134e-06, "epoch": 0.8994719537710472, "percentage": 89.96, "elapsed_time": "6:18:25", "remaining_time": "0:42:15"} +{"current_steps": 2258, "total_steps": 2509, "loss": 0.7807, "learning_rate": 1.0000935893771957e-06, "epoch": 0.8998704792268606, "percentage": 90.0, "elapsed_time": "6:18:35", "remaining_time": "0:42:05"} +{"current_steps": 2259, "total_steps": 2509, "loss": 0.8069, "learning_rate": 9.922070134490625e-07, "epoch": 0.9002690046826741, "percentage": 90.04, "elapsed_time": "6:18:45", "remaining_time": "0:41:55"} +{"current_steps": 2260, "total_steps": 2509, "loss": 0.778, "learning_rate": 9.843508658386147e-07, "epoch": 0.9006675301384875, "percentage": 90.08, "elapsed_time": "6:18:55", "remaining_time": "0:41:44"} +{"current_steps": 2261, "total_steps": 2509, "loss": 0.7545, "learning_rate": 9.765251591222302e-07, "epoch": 0.9010660555943011, "percentage": 90.12, "elapsed_time": "6:19:05", "remaining_time": "0:41:34"} +{"current_steps": 2262, "total_steps": 2509, "loss": 0.8013, "learning_rate": 9.687299058275723e-07, "epoch": 0.9014645810501146, "percentage": 90.16, "elapsed_time": "6:19:16", "remaining_time": "0:41:24"} +{"current_steps": 2263, "total_steps": 2509, "loss": 0.7946, "learning_rate": 9.609651184335389e-07, "epoch": 0.901863106505928, "percentage": 90.2, "elapsed_time": "6:19:26", "remaining_time": "0:41:14"} +{"current_steps": 2264, "total_steps": 2509, "loss": 0.7772, "learning_rate": 9.532308093702691e-07, "epoch": 0.9022616319617416, "percentage": 90.24, "elapsed_time": "6:19:36", "remaining_time": "0:41:04"} +{"current_steps": 2265, "total_steps": 2509, "loss": 0.7696, "learning_rate": 9.455269910191101e-07, "epoch": 0.902660157417555, "percentage": 90.28, "elapsed_time": "6:19:46", "remaining_time": "0:40:54"} +{"current_steps": 2266, "total_steps": 2509, "loss": 0.8139, "learning_rate": 9.378536757125878e-07, "epoch": 0.9030586828733685, "percentage": 90.31, "elapsed_time": "6:19:56", "remaining_time": "0:40:44"} +{"current_steps": 2267, "total_steps": 2509, "loss": 0.7858, "learning_rate": 9.302108757344119e-07, "epoch": 0.903457208329182, "percentage": 90.35, "elapsed_time": "6:20:06", "remaining_time": "0:40:34"} +{"current_steps": 2268, "total_steps": 2509, "loss": 0.7788, "learning_rate": 9.225986033194268e-07, "epoch": 0.9038557337849955, "percentage": 90.39, "elapsed_time": "6:20:16", "remaining_time": "0:40:24"} +{"current_steps": 2269, "total_steps": 2509, "loss": 0.7866, "learning_rate": 9.150168706536178e-07, "epoch": 0.904254259240809, "percentage": 90.43, "elapsed_time": "6:20:26", "remaining_time": "0:40:14"} +{"current_steps": 2270, "total_steps": 2509, "loss": 0.7893, "learning_rate": 9.07465689874083e-07, "epoch": 0.9046527846966225, "percentage": 90.47, "elapsed_time": "6:20:36", "remaining_time": "0:40:04"} +{"current_steps": 2271, "total_steps": 2509, "loss": 0.7748, "learning_rate": 8.99945073069004e-07, "epoch": 0.905051310152436, "percentage": 90.51, "elapsed_time": "6:20:46", "remaining_time": "0:39:54"} +{"current_steps": 2272, "total_steps": 2509, "loss": 0.8568, "learning_rate": 8.924550322776415e-07, "epoch": 0.9054498356082494, "percentage": 90.55, "elapsed_time": "6:20:56", "remaining_time": "0:39:44"} +{"current_steps": 2273, "total_steps": 2509, "loss": 0.8056, "learning_rate": 8.849955794903042e-07, "epoch": 0.905848361064063, "percentage": 90.59, "elapsed_time": "6:21:06", "remaining_time": "0:39:34"} +{"current_steps": 2274, "total_steps": 2509, "loss": 0.7911, "learning_rate": 8.775667266483378e-07, "epoch": 0.9062468865198765, "percentage": 90.63, "elapsed_time": "6:21:16", "remaining_time": "0:39:24"} +{"current_steps": 2275, "total_steps": 2509, "loss": 0.7965, "learning_rate": 8.70168485644094e-07, "epoch": 0.9066454119756899, "percentage": 90.67, "elapsed_time": "6:21:26", "remaining_time": "0:39:14"} +{"current_steps": 2276, "total_steps": 2509, "loss": 0.7843, "learning_rate": 8.628008683209388e-07, "epoch": 0.9070439374315035, "percentage": 90.71, "elapsed_time": "6:21:37", "remaining_time": "0:39:04"} +{"current_steps": 2277, "total_steps": 2509, "loss": 0.7999, "learning_rate": 8.554638864731957e-07, "epoch": 0.9074424628873169, "percentage": 90.75, "elapsed_time": "6:21:47", "remaining_time": "0:38:53"} +{"current_steps": 2278, "total_steps": 2509, "loss": 0.7665, "learning_rate": 8.481575518461538e-07, "epoch": 0.9078409883431304, "percentage": 90.79, "elapsed_time": "6:21:57", "remaining_time": "0:38:43"} +{"current_steps": 2279, "total_steps": 2509, "loss": 0.8056, "learning_rate": 8.408818761360437e-07, "epoch": 0.9082395137989439, "percentage": 90.83, "elapsed_time": "6:22:07", "remaining_time": "0:38:33"} +{"current_steps": 2280, "total_steps": 2509, "loss": 0.8144, "learning_rate": 8.336368709900089e-07, "epoch": 0.9086380392547574, "percentage": 90.87, "elapsed_time": "6:22:17", "remaining_time": "0:38:23"} +{"current_steps": 2281, "total_steps": 2509, "loss": 0.7771, "learning_rate": 8.264225480061028e-07, "epoch": 0.9090365647105709, "percentage": 90.91, "elapsed_time": "6:22:27", "remaining_time": "0:38:13"} +{"current_steps": 2282, "total_steps": 2509, "loss": 0.7938, "learning_rate": 8.192389187332539e-07, "epoch": 0.9094350901663844, "percentage": 90.95, "elapsed_time": "6:22:37", "remaining_time": "0:38:03"} +{"current_steps": 2283, "total_steps": 2509, "loss": 0.7845, "learning_rate": 8.120859946712634e-07, "epoch": 0.9098336156221979, "percentage": 90.99, "elapsed_time": "6:22:47", "remaining_time": "0:37:53"} +{"current_steps": 2284, "total_steps": 2509, "loss": 0.7958, "learning_rate": 8.049637872707672e-07, "epoch": 0.9102321410780113, "percentage": 91.03, "elapsed_time": "6:22:57", "remaining_time": "0:37:43"} +{"current_steps": 2285, "total_steps": 2509, "loss": 0.7612, "learning_rate": 7.978723079332406e-07, "epoch": 0.9106306665338249, "percentage": 91.07, "elapsed_time": "6:23:07", "remaining_time": "0:37:33"} +{"current_steps": 2286, "total_steps": 2509, "loss": 0.7853, "learning_rate": 7.908115680109629e-07, "epoch": 0.9110291919896384, "percentage": 91.11, "elapsed_time": "6:23:17", "remaining_time": "0:37:23"} +{"current_steps": 2287, "total_steps": 2509, "loss": 0.8041, "learning_rate": 7.837815788070035e-07, "epoch": 0.9114277174454518, "percentage": 91.15, "elapsed_time": "6:23:27", "remaining_time": "0:37:13"} +{"current_steps": 2288, "total_steps": 2509, "loss": 0.7872, "learning_rate": 7.767823515752116e-07, "epoch": 0.9118262429012653, "percentage": 91.19, "elapsed_time": "6:23:37", "remaining_time": "0:37:03"} +{"current_steps": 2289, "total_steps": 2509, "loss": 0.8041, "learning_rate": 7.698138975201819e-07, "epoch": 0.9122247683570788, "percentage": 91.23, "elapsed_time": "6:23:47", "remaining_time": "0:36:53"} +{"current_steps": 2290, "total_steps": 2509, "loss": 0.7982, "learning_rate": 7.628762277972534e-07, "epoch": 0.9126232938128923, "percentage": 91.27, "elapsed_time": "6:23:57", "remaining_time": "0:36:43"} +{"current_steps": 2291, "total_steps": 2509, "loss": 0.7938, "learning_rate": 7.559693535124802e-07, "epoch": 0.9130218192687057, "percentage": 91.31, "elapsed_time": "6:24:07", "remaining_time": "0:36:33"} +{"current_steps": 2292, "total_steps": 2509, "loss": 0.7959, "learning_rate": 7.490932857226219e-07, "epoch": 0.9134203447245193, "percentage": 91.35, "elapsed_time": "6:24:18", "remaining_time": "0:36:23"} +{"current_steps": 2293, "total_steps": 2509, "loss": 0.834, "learning_rate": 7.422480354351202e-07, "epoch": 0.9138188701803328, "percentage": 91.39, "elapsed_time": "6:24:28", "remaining_time": "0:36:13"} +{"current_steps": 2294, "total_steps": 2509, "loss": 0.7762, "learning_rate": 7.354336136080809e-07, "epoch": 0.9142173956361462, "percentage": 91.43, "elapsed_time": "6:24:38", "remaining_time": "0:36:02"} +{"current_steps": 2295, "total_steps": 2509, "loss": 0.797, "learning_rate": 7.286500311502686e-07, "epoch": 0.9146159210919598, "percentage": 91.47, "elapsed_time": "6:24:48", "remaining_time": "0:35:52"} +{"current_steps": 2296, "total_steps": 2509, "loss": 0.7763, "learning_rate": 7.218972989210616e-07, "epoch": 0.9150144465477732, "percentage": 91.51, "elapsed_time": "6:24:58", "remaining_time": "0:35:42"} +{"current_steps": 2297, "total_steps": 2509, "loss": 0.7568, "learning_rate": 7.151754277304657e-07, "epoch": 0.9154129720035867, "percentage": 91.55, "elapsed_time": "6:25:08", "remaining_time": "0:35:32"} +{"current_steps": 2298, "total_steps": 2509, "loss": 0.7915, "learning_rate": 7.084844283390823e-07, "epoch": 0.9158114974594003, "percentage": 91.59, "elapsed_time": "6:25:18", "remaining_time": "0:35:22"} +{"current_steps": 2299, "total_steps": 2509, "loss": 0.8034, "learning_rate": 7.018243114580858e-07, "epoch": 0.9162100229152137, "percentage": 91.63, "elapsed_time": "6:25:28", "remaining_time": "0:35:12"} +{"current_steps": 2300, "total_steps": 2509, "loss": 0.7857, "learning_rate": 6.951950877492209e-07, "epoch": 0.9166085483710272, "percentage": 91.67, "elapsed_time": "6:25:38", "remaining_time": "0:35:02"} +{"current_steps": 2301, "total_steps": 2509, "loss": 0.756, "learning_rate": 6.885967678247652e-07, "epoch": 0.9170070738268407, "percentage": 91.71, "elapsed_time": "6:25:48", "remaining_time": "0:34:52"} +{"current_steps": 2302, "total_steps": 2509, "loss": 0.7857, "learning_rate": 6.820293622475427e-07, "epoch": 0.9174055992826542, "percentage": 91.75, "elapsed_time": "6:25:58", "remaining_time": "0:34:42"} +{"current_steps": 2303, "total_steps": 2509, "loss": 0.7991, "learning_rate": 6.754928815308703e-07, "epoch": 0.9178041247384676, "percentage": 91.79, "elapsed_time": "6:26:08", "remaining_time": "0:34:32"} +{"current_steps": 2304, "total_steps": 2509, "loss": 0.8101, "learning_rate": 6.689873361385691e-07, "epoch": 0.9182026501942812, "percentage": 91.83, "elapsed_time": "6:26:18", "remaining_time": "0:34:22"} +{"current_steps": 2305, "total_steps": 2509, "loss": 0.7955, "learning_rate": 6.625127364849371e-07, "epoch": 0.9186011756500947, "percentage": 91.87, "elapsed_time": "6:26:28", "remaining_time": "0:34:12"} +{"current_steps": 2306, "total_steps": 2509, "loss": 0.7844, "learning_rate": 6.560690929347324e-07, "epoch": 0.9189997011059081, "percentage": 91.91, "elapsed_time": "6:26:38", "remaining_time": "0:34:02"} +{"current_steps": 2307, "total_steps": 2509, "loss": 0.7903, "learning_rate": 6.49656415803157e-07, "epoch": 0.9193982265617217, "percentage": 91.95, "elapsed_time": "6:26:48", "remaining_time": "0:33:52"} +{"current_steps": 2308, "total_steps": 2509, "loss": 0.7761, "learning_rate": 6.432747153558416e-07, "epoch": 0.9197967520175351, "percentage": 91.99, "elapsed_time": "6:26:58", "remaining_time": "0:33:42"} +{"current_steps": 2309, "total_steps": 2509, "loss": 0.7947, "learning_rate": 6.369240018088297e-07, "epoch": 0.9201952774733486, "percentage": 92.03, "elapsed_time": "6:27:08", "remaining_time": "0:33:32"} +{"current_steps": 2310, "total_steps": 2509, "loss": 0.7813, "learning_rate": 6.306042853285532e-07, "epoch": 0.9205938029291622, "percentage": 92.07, "elapsed_time": "6:27:18", "remaining_time": "0:33:21"} +{"current_steps": 2311, "total_steps": 2509, "loss": 0.7982, "learning_rate": 6.243155760318332e-07, "epoch": 0.9209923283849756, "percentage": 92.11, "elapsed_time": "6:27:28", "remaining_time": "0:33:11"} +{"current_steps": 2312, "total_steps": 2509, "loss": 0.7885, "learning_rate": 6.180578839858475e-07, "epoch": 0.9213908538407891, "percentage": 92.15, "elapsed_time": "6:27:38", "remaining_time": "0:33:01"} +{"current_steps": 2313, "total_steps": 2509, "loss": 0.7949, "learning_rate": 6.118312192081166e-07, "epoch": 0.9217893792966025, "percentage": 92.19, "elapsed_time": "6:27:48", "remaining_time": "0:32:51"} +{"current_steps": 2314, "total_steps": 2509, "loss": 0.7717, "learning_rate": 6.056355916665024e-07, "epoch": 0.9221879047524161, "percentage": 92.23, "elapsed_time": "6:27:58", "remaining_time": "0:32:41"} +{"current_steps": 2315, "total_steps": 2509, "loss": 0.7811, "learning_rate": 5.994710112791713e-07, "epoch": 0.9225864302082295, "percentage": 92.27, "elapsed_time": "6:28:08", "remaining_time": "0:32:31"} +{"current_steps": 2316, "total_steps": 2509, "loss": 0.7755, "learning_rate": 5.933374879145893e-07, "epoch": 0.922984955664043, "percentage": 92.31, "elapsed_time": "6:28:18", "remaining_time": "0:32:21"} +{"current_steps": 2317, "total_steps": 2509, "loss": 0.8114, "learning_rate": 5.872350313915131e-07, "epoch": 0.9233834811198566, "percentage": 92.35, "elapsed_time": "6:28:29", "remaining_time": "0:32:11"} +{"current_steps": 2318, "total_steps": 2509, "loss": 0.7871, "learning_rate": 5.811636514789598e-07, "epoch": 0.92378200657567, "percentage": 92.39, "elapsed_time": "6:28:39", "remaining_time": "0:32:01"} +{"current_steps": 2319, "total_steps": 2509, "loss": 0.8039, "learning_rate": 5.75123357896199e-07, "epoch": 0.9241805320314835, "percentage": 92.43, "elapsed_time": "6:28:49", "remaining_time": "0:31:51"} +{"current_steps": 2320, "total_steps": 2509, "loss": 0.7835, "learning_rate": 5.691141603127381e-07, "epoch": 0.924579057487297, "percentage": 92.47, "elapsed_time": "6:28:59", "remaining_time": "0:31:41"} +{"current_steps": 2321, "total_steps": 2509, "loss": 0.8234, "learning_rate": 5.631360683483001e-07, "epoch": 0.9249775829431105, "percentage": 92.51, "elapsed_time": "6:29:09", "remaining_time": "0:31:31"} +{"current_steps": 2322, "total_steps": 2509, "loss": 0.79, "learning_rate": 5.571890915728206e-07, "epoch": 0.925376108398924, "percentage": 92.55, "elapsed_time": "6:29:19", "remaining_time": "0:31:21"} +{"current_steps": 2323, "total_steps": 2509, "loss": 0.7649, "learning_rate": 5.512732395064224e-07, "epoch": 0.9257746338547375, "percentage": 92.59, "elapsed_time": "6:29:29", "remaining_time": "0:31:11"} +{"current_steps": 2324, "total_steps": 2509, "loss": 0.8349, "learning_rate": 5.453885216193988e-07, "epoch": 0.926173159310551, "percentage": 92.63, "elapsed_time": "6:29:39", "remaining_time": "0:31:01"} +{"current_steps": 2325, "total_steps": 2509, "loss": 0.7978, "learning_rate": 5.395349473322032e-07, "epoch": 0.9265716847663644, "percentage": 92.67, "elapsed_time": "6:29:49", "remaining_time": "0:30:51"} +{"current_steps": 2326, "total_steps": 2509, "loss": 0.7777, "learning_rate": 5.337125260154397e-07, "epoch": 0.926970210222178, "percentage": 92.71, "elapsed_time": "6:29:59", "remaining_time": "0:30:40"} +{"current_steps": 2327, "total_steps": 2509, "loss": 0.8047, "learning_rate": 5.279212669898326e-07, "epoch": 0.9273687356779914, "percentage": 92.75, "elapsed_time": "6:30:09", "remaining_time": "0:30:30"} +{"current_steps": 2328, "total_steps": 2509, "loss": 0.7573, "learning_rate": 5.221611795262283e-07, "epoch": 0.9277672611338049, "percentage": 92.79, "elapsed_time": "6:30:19", "remaining_time": "0:30:20"} +{"current_steps": 2329, "total_steps": 2509, "loss": 0.8202, "learning_rate": 5.164322728455684e-07, "epoch": 0.9281657865896185, "percentage": 92.83, "elapsed_time": "6:30:29", "remaining_time": "0:30:10"} +{"current_steps": 2330, "total_steps": 2509, "loss": 0.7805, "learning_rate": 5.107345561188836e-07, "epoch": 0.9285643120454319, "percentage": 92.87, "elapsed_time": "6:30:39", "remaining_time": "0:30:00"} +{"current_steps": 2331, "total_steps": 2509, "loss": 0.7911, "learning_rate": 5.050680384672668e-07, "epoch": 0.9289628375012454, "percentage": 92.91, "elapsed_time": "6:30:49", "remaining_time": "0:29:50"} +{"current_steps": 2332, "total_steps": 2509, "loss": 0.8286, "learning_rate": 4.994327289618728e-07, "epoch": 0.9293613629570588, "percentage": 92.95, "elapsed_time": "6:30:59", "remaining_time": "0:29:40"} +{"current_steps": 2333, "total_steps": 2509, "loss": 0.7741, "learning_rate": 4.938286366238942e-07, "epoch": 0.9297598884128724, "percentage": 92.99, "elapsed_time": "6:31:10", "remaining_time": "0:29:30"} +{"current_steps": 2334, "total_steps": 2509, "loss": 0.806, "learning_rate": 4.88255770424555e-07, "epoch": 0.9301584138686858, "percentage": 93.03, "elapsed_time": "6:31:20", "remaining_time": "0:29:20"} +{"current_steps": 2335, "total_steps": 2509, "loss": 0.7898, "learning_rate": 4.827141392850876e-07, "epoch": 0.9305569393244993, "percentage": 93.06, "elapsed_time": "6:31:30", "remaining_time": "0:29:10"} +{"current_steps": 2336, "total_steps": 2509, "loss": 0.7764, "learning_rate": 4.772037520767181e-07, "epoch": 0.9309554647803129, "percentage": 93.1, "elapsed_time": "6:31:40", "remaining_time": "0:29:00"} +{"current_steps": 2337, "total_steps": 2509, "loss": 0.8058, "learning_rate": 4.7172461762066356e-07, "epoch": 0.9313539902361263, "percentage": 93.14, "elapsed_time": "6:31:50", "remaining_time": "0:28:50"} +{"current_steps": 2338, "total_steps": 2509, "loss": 0.7747, "learning_rate": 4.662767446881078e-07, "epoch": 0.9317525156919398, "percentage": 93.18, "elapsed_time": "6:32:00", "remaining_time": "0:28:40"} +{"current_steps": 2339, "total_steps": 2509, "loss": 0.7969, "learning_rate": 4.6086014200018793e-07, "epoch": 0.9321510411477533, "percentage": 93.22, "elapsed_time": "6:32:10", "remaining_time": "0:28:30"} +{"current_steps": 2340, "total_steps": 2509, "loss": 0.775, "learning_rate": 4.5547481822799e-07, "epoch": 0.9325495666035668, "percentage": 93.26, "elapsed_time": "6:32:20", "remaining_time": "0:28:20"} +{"current_steps": 2341, "total_steps": 2509, "loss": 0.7898, "learning_rate": 4.5012078199251576e-07, "epoch": 0.9329480920593803, "percentage": 93.3, "elapsed_time": "6:32:30", "remaining_time": "0:28:10"} +{"current_steps": 2342, "total_steps": 2509, "loss": 0.7734, "learning_rate": 4.4479804186469353e-07, "epoch": 0.9333466175151938, "percentage": 93.34, "elapsed_time": "6:32:40", "remaining_time": "0:28:00"} +{"current_steps": 2343, "total_steps": 2509, "loss": 0.7788, "learning_rate": 4.3950660636534084e-07, "epoch": 0.9337451429710073, "percentage": 93.38, "elapsed_time": "6:32:51", "remaining_time": "0:27:49"} +{"current_steps": 2344, "total_steps": 2509, "loss": 0.8214, "learning_rate": 4.342464839651661e-07, "epoch": 0.9341436684268207, "percentage": 93.42, "elapsed_time": "6:33:01", "remaining_time": "0:27:39"} +{"current_steps": 2345, "total_steps": 2509, "loss": 0.7846, "learning_rate": 4.290176830847559e-07, "epoch": 0.9345421938826343, "percentage": 93.46, "elapsed_time": "6:33:10", "remaining_time": "0:27:29"} +{"current_steps": 2346, "total_steps": 2509, "loss": 0.7669, "learning_rate": 4.238202120945478e-07, "epoch": 0.9349407193384477, "percentage": 93.5, "elapsed_time": "6:33:21", "remaining_time": "0:27:19"} +{"current_steps": 2347, "total_steps": 2509, "loss": 0.812, "learning_rate": 4.186540793148308e-07, "epoch": 0.9353392447942612, "percentage": 93.54, "elapsed_time": "6:33:31", "remaining_time": "0:27:09"} +{"current_steps": 2348, "total_steps": 2509, "loss": 0.8019, "learning_rate": 4.13519293015725e-07, "epoch": 0.9357377702500748, "percentage": 93.58, "elapsed_time": "6:33:41", "remaining_time": "0:26:59"} +{"current_steps": 2349, "total_steps": 2509, "loss": 0.7991, "learning_rate": 4.084158614171685e-07, "epoch": 0.9361362957058882, "percentage": 93.62, "elapsed_time": "6:33:51", "remaining_time": "0:26:49"} +{"current_steps": 2350, "total_steps": 2509, "loss": 0.7821, "learning_rate": 4.033437926889061e-07, "epoch": 0.9365348211617017, "percentage": 93.66, "elapsed_time": "6:34:01", "remaining_time": "0:26:39"} +{"current_steps": 2351, "total_steps": 2509, "loss": 0.7919, "learning_rate": 3.983030949504829e-07, "epoch": 0.9369333466175152, "percentage": 93.7, "elapsed_time": "6:34:11", "remaining_time": "0:26:29"} +{"current_steps": 2352, "total_steps": 2509, "loss": 0.7896, "learning_rate": 3.932937762712108e-07, "epoch": 0.9373318720733287, "percentage": 93.74, "elapsed_time": "6:34:21", "remaining_time": "0:26:19"} +{"current_steps": 2353, "total_steps": 2509, "loss": 0.8139, "learning_rate": 3.883158446701796e-07, "epoch": 0.9377303975291422, "percentage": 93.78, "elapsed_time": "6:34:31", "remaining_time": "0:26:09"} +{"current_steps": 2354, "total_steps": 2509, "loss": 0.805, "learning_rate": 3.833693081162326e-07, "epoch": 0.9381289229849556, "percentage": 93.82, "elapsed_time": "6:34:41", "remaining_time": "0:25:59"} +{"current_steps": 2355, "total_steps": 2509, "loss": 0.7965, "learning_rate": 3.784541745279491e-07, "epoch": 0.9385274484407692, "percentage": 93.86, "elapsed_time": "6:34:51", "remaining_time": "0:25:49"} +{"current_steps": 2356, "total_steps": 2509, "loss": 0.7731, "learning_rate": 3.735704517736438e-07, "epoch": 0.9389259738965826, "percentage": 93.9, "elapsed_time": "6:35:01", "remaining_time": "0:25:39"} +{"current_steps": 2357, "total_steps": 2509, "loss": 0.7985, "learning_rate": 3.6871814767134305e-07, "epoch": 0.9393244993523961, "percentage": 93.94, "elapsed_time": "6:35:11", "remaining_time": "0:25:29"} +{"current_steps": 2358, "total_steps": 2509, "loss": 0.8119, "learning_rate": 3.638972699887822e-07, "epoch": 0.9397230248082096, "percentage": 93.98, "elapsed_time": "6:35:21", "remaining_time": "0:25:19"} +{"current_steps": 2359, "total_steps": 2509, "loss": 0.7902, "learning_rate": 3.5910782644338336e-07, "epoch": 0.9401215502640231, "percentage": 94.02, "elapsed_time": "6:35:31", "remaining_time": "0:25:08"} +{"current_steps": 2360, "total_steps": 2509, "loss": 0.7575, "learning_rate": 3.543498247022492e-07, "epoch": 0.9405200757198366, "percentage": 94.06, "elapsed_time": "6:35:41", "remaining_time": "0:24:58"} +{"current_steps": 2361, "total_steps": 2509, "loss": 0.7598, "learning_rate": 3.4962327238215134e-07, "epoch": 0.9409186011756501, "percentage": 94.1, "elapsed_time": "6:35:51", "remaining_time": "0:24:48"} +{"current_steps": 2362, "total_steps": 2509, "loss": 0.7943, "learning_rate": 3.449281770495105e-07, "epoch": 0.9413171266314636, "percentage": 94.14, "elapsed_time": "6:36:01", "remaining_time": "0:24:38"} +{"current_steps": 2363, "total_steps": 2509, "loss": 0.8086, "learning_rate": 3.402645462204013e-07, "epoch": 0.941715652087277, "percentage": 94.18, "elapsed_time": "6:36:11", "remaining_time": "0:24:28"} +{"current_steps": 2364, "total_steps": 2509, "loss": 0.804, "learning_rate": 3.3563238736051604e-07, "epoch": 0.9421141775430906, "percentage": 94.22, "elapsed_time": "6:36:21", "remaining_time": "0:24:18"} +{"current_steps": 2365, "total_steps": 2509, "loss": 0.7751, "learning_rate": 3.310317078851744e-07, "epoch": 0.9425127029989041, "percentage": 94.26, "elapsed_time": "6:36:31", "remaining_time": "0:24:08"} +{"current_steps": 2366, "total_steps": 2509, "loss": 0.7862, "learning_rate": 3.2646251515929597e-07, "epoch": 0.9429112284547175, "percentage": 94.3, "elapsed_time": "6:36:41", "remaining_time": "0:23:58"} +{"current_steps": 2367, "total_steps": 2509, "loss": 0.8166, "learning_rate": 3.2192481649740095e-07, "epoch": 0.9433097539105311, "percentage": 94.34, "elapsed_time": "6:36:51", "remaining_time": "0:23:48"} +{"current_steps": 2368, "total_steps": 2509, "loss": 0.7655, "learning_rate": 3.1741861916359193e-07, "epoch": 0.9437082793663445, "percentage": 94.38, "elapsed_time": "6:37:01", "remaining_time": "0:23:38"} +{"current_steps": 2369, "total_steps": 2509, "loss": 0.7942, "learning_rate": 3.129439303715387e-07, "epoch": 0.944106804822158, "percentage": 94.42, "elapsed_time": "6:37:11", "remaining_time": "0:23:28"} +{"current_steps": 2370, "total_steps": 2509, "loss": 0.8114, "learning_rate": 3.0850075728448e-07, "epoch": 0.9445053302779715, "percentage": 94.46, "elapsed_time": "6:37:21", "remaining_time": "0:23:18"} +{"current_steps": 2371, "total_steps": 2509, "loss": 0.783, "learning_rate": 3.0408910701519303e-07, "epoch": 0.944903855733785, "percentage": 94.5, "elapsed_time": "6:37:31", "remaining_time": "0:23:08"} +{"current_steps": 2372, "total_steps": 2509, "loss": 0.8062, "learning_rate": 2.997089866259972e-07, "epoch": 0.9453023811895985, "percentage": 94.54, "elapsed_time": "6:37:42", "remaining_time": "0:22:58"} +{"current_steps": 2373, "total_steps": 2509, "loss": 0.8098, "learning_rate": 2.953604031287349e-07, "epoch": 0.945700906645412, "percentage": 94.58, "elapsed_time": "6:37:52", "remaining_time": "0:22:48"} +{"current_steps": 2374, "total_steps": 2509, "loss": 0.7549, "learning_rate": 2.910433634847709e-07, "epoch": 0.9460994321012255, "percentage": 94.62, "elapsed_time": "6:38:02", "remaining_time": "0:22:38"} +{"current_steps": 2375, "total_steps": 2509, "loss": 0.7688, "learning_rate": 2.8675787460496816e-07, "epoch": 0.9464979575570389, "percentage": 94.66, "elapsed_time": "6:38:12", "remaining_time": "0:22:28"} +{"current_steps": 2376, "total_steps": 2509, "loss": 0.7844, "learning_rate": 2.8250394334967903e-07, "epoch": 0.9468964830128525, "percentage": 94.7, "elapsed_time": "6:38:22", "remaining_time": "0:22:17"} +{"current_steps": 2377, "total_steps": 2509, "loss": 0.7873, "learning_rate": 2.7828157652874054e-07, "epoch": 0.947295008468666, "percentage": 94.74, "elapsed_time": "6:38:32", "remaining_time": "0:22:07"} +{"current_steps": 2378, "total_steps": 2509, "loss": 0.7919, "learning_rate": 2.7409078090146144e-07, "epoch": 0.9476935339244794, "percentage": 94.78, "elapsed_time": "6:38:42", "remaining_time": "0:21:57"} +{"current_steps": 2379, "total_steps": 2509, "loss": 0.7906, "learning_rate": 2.699315631766064e-07, "epoch": 0.948092059380293, "percentage": 94.82, "elapsed_time": "6:38:52", "remaining_time": "0:21:47"} +{"current_steps": 2380, "total_steps": 2509, "loss": 0.7525, "learning_rate": 2.6580393001239604e-07, "epoch": 0.9484905848361064, "percentage": 94.86, "elapsed_time": "6:39:02", "remaining_time": "0:21:37"} +{"current_steps": 2381, "total_steps": 2509, "loss": 0.796, "learning_rate": 2.617078880164825e-07, "epoch": 0.9488891102919199, "percentage": 94.9, "elapsed_time": "6:39:12", "remaining_time": "0:21:27"} +{"current_steps": 2382, "total_steps": 2509, "loss": 0.8082, "learning_rate": 2.5764344374595187e-07, "epoch": 0.9492876357477333, "percentage": 94.94, "elapsed_time": "6:39:22", "remaining_time": "0:21:17"} +{"current_steps": 2383, "total_steps": 2509, "loss": 0.7828, "learning_rate": 2.5361060370729715e-07, "epoch": 0.9496861612035469, "percentage": 94.98, "elapsed_time": "6:39:33", "remaining_time": "0:21:07"} +{"current_steps": 2384, "total_steps": 2509, "loss": 0.7912, "learning_rate": 2.496093743564321e-07, "epoch": 0.9500846866593604, "percentage": 95.02, "elapsed_time": "6:39:43", "remaining_time": "0:20:57"} +{"current_steps": 2385, "total_steps": 2509, "loss": 0.795, "learning_rate": 2.4563976209865504e-07, "epoch": 0.9504832121151738, "percentage": 95.06, "elapsed_time": "6:39:53", "remaining_time": "0:20:47"} +{"current_steps": 2386, "total_steps": 2509, "loss": 0.7606, "learning_rate": 2.417017732886562e-07, "epoch": 0.9508817375709874, "percentage": 95.1, "elapsed_time": "6:40:03", "remaining_time": "0:20:37"} +{"current_steps": 2387, "total_steps": 2509, "loss": 0.7953, "learning_rate": 2.377954142305039e-07, "epoch": 0.9512802630268008, "percentage": 95.14, "elapsed_time": "6:40:13", "remaining_time": "0:20:27"} +{"current_steps": 2388, "total_steps": 2509, "loss": 0.7959, "learning_rate": 2.3392069117762706e-07, "epoch": 0.9516787884826143, "percentage": 95.18, "elapsed_time": "6:40:23", "remaining_time": "0:20:17"} +{"current_steps": 2389, "total_steps": 2509, "loss": 0.7736, "learning_rate": 2.300776103328173e-07, "epoch": 0.9520773139384279, "percentage": 95.22, "elapsed_time": "6:40:33", "remaining_time": "0:20:07"} +{"current_steps": 2390, "total_steps": 2509, "loss": 0.7606, "learning_rate": 2.2626617784820225e-07, "epoch": 0.9524758393942413, "percentage": 95.26, "elapsed_time": "6:40:43", "remaining_time": "0:19:57"} +{"current_steps": 2391, "total_steps": 2509, "loss": 0.7989, "learning_rate": 2.2248639982525688e-07, "epoch": 0.9528743648500548, "percentage": 95.3, "elapsed_time": "6:40:53", "remaining_time": "0:19:47"} +{"current_steps": 2392, "total_steps": 2509, "loss": 0.7957, "learning_rate": 2.1873828231477433e-07, "epoch": 0.9532728903058683, "percentage": 95.34, "elapsed_time": "6:41:03", "remaining_time": "0:19:37"} +{"current_steps": 2393, "total_steps": 2509, "loss": 0.8183, "learning_rate": 2.150218313168706e-07, "epoch": 0.9536714157616818, "percentage": 95.38, "elapsed_time": "6:41:13", "remaining_time": "0:19:26"} +{"current_steps": 2394, "total_steps": 2509, "loss": 0.7748, "learning_rate": 2.113370527809644e-07, "epoch": 0.9540699412174952, "percentage": 95.42, "elapsed_time": "6:41:23", "remaining_time": "0:19:16"} +{"current_steps": 2395, "total_steps": 2509, "loss": 0.7682, "learning_rate": 2.07683952605775e-07, "epoch": 0.9544684666733088, "percentage": 95.46, "elapsed_time": "6:41:33", "remaining_time": "0:19:06"} +{"current_steps": 2396, "total_steps": 2509, "loss": 0.7962, "learning_rate": 2.0406253663930675e-07, "epoch": 0.9548669921291223, "percentage": 95.5, "elapsed_time": "6:41:43", "remaining_time": "0:18:56"} +{"current_steps": 2397, "total_steps": 2509, "loss": 0.7971, "learning_rate": 2.0047281067884672e-07, "epoch": 0.9552655175849357, "percentage": 95.54, "elapsed_time": "6:41:53", "remaining_time": "0:18:46"} +{"current_steps": 2398, "total_steps": 2509, "loss": 0.7851, "learning_rate": 1.9691478047094924e-07, "epoch": 0.9556640430407493, "percentage": 95.58, "elapsed_time": "6:42:04", "remaining_time": "0:18:36"} +{"current_steps": 2399, "total_steps": 2509, "loss": 0.7729, "learning_rate": 1.9338845171142928e-07, "epoch": 0.9560625684965627, "percentage": 95.62, "elapsed_time": "6:42:14", "remaining_time": "0:18:26"} +{"current_steps": 2400, "total_steps": 2509, "loss": 0.7797, "learning_rate": 1.8989383004535121e-07, "epoch": 0.9564610939523762, "percentage": 95.66, "elapsed_time": "6:42:24", "remaining_time": "0:18:16"} +{"current_steps": 2401, "total_steps": 2509, "loss": 0.7869, "learning_rate": 1.86430921067029e-07, "epoch": 0.9568596194081896, "percentage": 95.7, "elapsed_time": "6:42:34", "remaining_time": "0:18:06"} +{"current_steps": 2402, "total_steps": 2509, "loss": 0.8196, "learning_rate": 1.8299973031999707e-07, "epoch": 0.9572581448640032, "percentage": 95.74, "elapsed_time": "6:42:44", "remaining_time": "0:17:56"} +{"current_steps": 2403, "total_steps": 2509, "loss": 0.7688, "learning_rate": 1.7960026329702618e-07, "epoch": 0.9576566703198167, "percentage": 95.78, "elapsed_time": "6:42:54", "remaining_time": "0:17:46"} +{"current_steps": 2404, "total_steps": 2509, "loss": 0.7745, "learning_rate": 1.762325254400965e-07, "epoch": 0.9580551957756301, "percentage": 95.82, "elapsed_time": "6:43:04", "remaining_time": "0:17:36"} +{"current_steps": 2405, "total_steps": 2509, "loss": 0.7688, "learning_rate": 1.7289652214039775e-07, "epoch": 0.9584537212314437, "percentage": 95.85, "elapsed_time": "6:43:14", "remaining_time": "0:17:26"} +{"current_steps": 2406, "total_steps": 2509, "loss": 0.7863, "learning_rate": 1.6959225873831586e-07, "epoch": 0.9588522466872571, "percentage": 95.89, "elapsed_time": "6:43:24", "remaining_time": "0:17:16"} +{"current_steps": 2407, "total_steps": 2509, "loss": 0.7826, "learning_rate": 1.6631974052342846e-07, "epoch": 0.9592507721430706, "percentage": 95.93, "elapsed_time": "6:43:34", "remaining_time": "0:17:06"} +{"current_steps": 2408, "total_steps": 2509, "loss": 0.7734, "learning_rate": 1.6307897273449168e-07, "epoch": 0.9596492975988842, "percentage": 95.97, "elapsed_time": "6:43:44", "remaining_time": "0:16:56"} +{"current_steps": 2409, "total_steps": 2509, "loss": 0.7992, "learning_rate": 1.5986996055943781e-07, "epoch": 0.9600478230546976, "percentage": 96.01, "elapsed_time": "6:43:54", "remaining_time": "0:16:46"} +{"current_steps": 2410, "total_steps": 2509, "loss": 0.8289, "learning_rate": 1.5669270913536427e-07, "epoch": 0.9604463485105111, "percentage": 96.05, "elapsed_time": "6:44:04", "remaining_time": "0:16:35"} +{"current_steps": 2411, "total_steps": 2509, "loss": 0.7726, "learning_rate": 1.535472235485158e-07, "epoch": 0.9608448739663246, "percentage": 96.09, "elapsed_time": "6:44:14", "remaining_time": "0:16:25"} +{"current_steps": 2412, "total_steps": 2509, "loss": 0.7922, "learning_rate": 1.5043350883429786e-07, "epoch": 0.9612433994221381, "percentage": 96.13, "elapsed_time": "6:44:24", "remaining_time": "0:16:15"} +{"current_steps": 2413, "total_steps": 2509, "loss": 0.7802, "learning_rate": 1.4735156997724765e-07, "epoch": 0.9616419248779515, "percentage": 96.17, "elapsed_time": "6:44:35", "remaining_time": "0:16:05"} +{"current_steps": 2414, "total_steps": 2509, "loss": 0.7903, "learning_rate": 1.4430141191103865e-07, "epoch": 0.9620404503337651, "percentage": 96.21, "elapsed_time": "6:44:45", "remaining_time": "0:15:55"} +{"current_steps": 2415, "total_steps": 2509, "loss": 0.7993, "learning_rate": 1.41283039518465e-07, "epoch": 0.9624389757895786, "percentage": 96.25, "elapsed_time": "6:44:55", "remaining_time": "0:15:45"} +{"current_steps": 2416, "total_steps": 2509, "loss": 0.7952, "learning_rate": 1.3829645763144162e-07, "epoch": 0.962837501245392, "percentage": 96.29, "elapsed_time": "6:45:05", "remaining_time": "0:15:35"} +{"current_steps": 2417, "total_steps": 2509, "loss": 0.7988, "learning_rate": 1.353416710309885e-07, "epoch": 0.9632360267012056, "percentage": 96.33, "elapsed_time": "6:45:15", "remaining_time": "0:15:25"} +{"current_steps": 2418, "total_steps": 2509, "loss": 0.7676, "learning_rate": 1.324186844472264e-07, "epoch": 0.963634552157019, "percentage": 96.37, "elapsed_time": "6:45:25", "remaining_time": "0:15:15"} +{"current_steps": 2419, "total_steps": 2509, "loss": 0.7837, "learning_rate": 1.295275025593745e-07, "epoch": 0.9640330776128325, "percentage": 96.41, "elapsed_time": "6:45:35", "remaining_time": "0:15:05"} +{"current_steps": 2420, "total_steps": 2509, "loss": 0.7841, "learning_rate": 1.2666812999573064e-07, "epoch": 0.9644316030686461, "percentage": 96.45, "elapsed_time": "6:45:45", "remaining_time": "0:14:55"} +{"current_steps": 2421, "total_steps": 2509, "loss": 0.7682, "learning_rate": 1.2384057133367988e-07, "epoch": 0.9648301285244595, "percentage": 96.49, "elapsed_time": "6:45:55", "remaining_time": "0:14:45"} +{"current_steps": 2422, "total_steps": 2509, "loss": 0.7989, "learning_rate": 1.2104483109967035e-07, "epoch": 0.965228653980273, "percentage": 96.53, "elapsed_time": "6:46:05", "remaining_time": "0:14:35"} +{"current_steps": 2423, "total_steps": 2509, "loss": 0.761, "learning_rate": 1.1828091376921758e-07, "epoch": 0.9656271794360864, "percentage": 96.57, "elapsed_time": "6:46:15", "remaining_time": "0:14:25"} +{"current_steps": 2424, "total_steps": 2509, "loss": 0.795, "learning_rate": 1.1554882376689557e-07, "epoch": 0.9660257048919, "percentage": 96.61, "elapsed_time": "6:46:25", "remaining_time": "0:14:15"} +{"current_steps": 2425, "total_steps": 2509, "loss": 0.7544, "learning_rate": 1.1284856546632583e-07, "epoch": 0.9664242303477134, "percentage": 96.65, "elapsed_time": "6:46:35", "remaining_time": "0:14:05"} +{"current_steps": 2426, "total_steps": 2509, "loss": 0.7938, "learning_rate": 1.1018014319017056e-07, "epoch": 0.966822755803527, "percentage": 96.69, "elapsed_time": "6:46:45", "remaining_time": "0:13:54"} +{"current_steps": 2427, "total_steps": 2509, "loss": 0.8, "learning_rate": 1.0754356121013276e-07, "epoch": 0.9672212812593405, "percentage": 96.73, "elapsed_time": "6:46:56", "remaining_time": "0:13:44"} +{"current_steps": 2428, "total_steps": 2509, "loss": 0.7909, "learning_rate": 1.0493882374694287e-07, "epoch": 0.9676198067151539, "percentage": 96.77, "elapsed_time": "6:47:06", "remaining_time": "0:13:34"} +{"current_steps": 2429, "total_steps": 2509, "loss": 0.7986, "learning_rate": 1.0236593497035208e-07, "epoch": 0.9680183321709674, "percentage": 96.81, "elapsed_time": "6:47:16", "remaining_time": "0:13:24"} +{"current_steps": 2430, "total_steps": 2509, "loss": 0.7854, "learning_rate": 9.982489899912573e-08, "epoch": 0.9684168576267809, "percentage": 96.85, "elapsed_time": "6:47:26", "remaining_time": "0:13:14"} +{"current_steps": 2431, "total_steps": 2509, "loss": 0.798, "learning_rate": 9.731571990104105e-08, "epoch": 0.9688153830825944, "percentage": 96.89, "elapsed_time": "6:47:36", "remaining_time": "0:13:04"} +{"current_steps": 2432, "total_steps": 2509, "loss": 0.7845, "learning_rate": 9.483840169287828e-08, "epoch": 0.9692139085384079, "percentage": 96.93, "elapsed_time": "6:47:46", "remaining_time": "0:12:54"} +{"current_steps": 2433, "total_steps": 2509, "loss": 0.8013, "learning_rate": 9.239294834041179e-08, "epoch": 0.9696124339942214, "percentage": 96.97, "elapsed_time": "6:47:56", "remaining_time": "0:12:44"} +{"current_steps": 2434, "total_steps": 2509, "loss": 0.8095, "learning_rate": 8.997936375840566e-08, "epoch": 0.9700109594500349, "percentage": 97.01, "elapsed_time": "6:48:06", "remaining_time": "0:12:34"} +{"current_steps": 2435, "total_steps": 2509, "loss": 0.7804, "learning_rate": 8.759765181060698e-08, "epoch": 0.9704094849058483, "percentage": 97.05, "elapsed_time": "6:48:16", "remaining_time": "0:12:24"} +{"current_steps": 2436, "total_steps": 2509, "loss": 0.7941, "learning_rate": 8.524781630974144e-08, "epoch": 0.9708080103616619, "percentage": 97.09, "elapsed_time": "6:48:26", "remaining_time": "0:12:14"} +{"current_steps": 2437, "total_steps": 2509, "loss": 0.8026, "learning_rate": 8.292986101750222e-08, "epoch": 0.9712065358174753, "percentage": 97.13, "elapsed_time": "6:48:36", "remaining_time": "0:12:04"} +{"current_steps": 2438, "total_steps": 2509, "loss": 0.7835, "learning_rate": 8.064378964455666e-08, "epoch": 0.9716050612732888, "percentage": 97.17, "elapsed_time": "6:48:46", "remaining_time": "0:11:54"} +{"current_steps": 2439, "total_steps": 2509, "loss": 0.7761, "learning_rate": 7.838960585051959e-08, "epoch": 0.9720035867291024, "percentage": 97.21, "elapsed_time": "6:48:56", "remaining_time": "0:11:44"} +{"current_steps": 2440, "total_steps": 2509, "loss": 0.7837, "learning_rate": 7.616731324396887e-08, "epoch": 0.9724021121849158, "percentage": 97.25, "elapsed_time": "6:49:06", "remaining_time": "0:11:34"} +{"current_steps": 2441, "total_steps": 2509, "loss": 0.8045, "learning_rate": 7.397691538242103e-08, "epoch": 0.9728006376407293, "percentage": 97.29, "elapsed_time": "6:49:16", "remaining_time": "0:11:24"} +{"current_steps": 2442, "total_steps": 2509, "loss": 0.8012, "learning_rate": 7.181841577234449e-08, "epoch": 0.9731991630965428, "percentage": 97.33, "elapsed_time": "6:49:26", "remaining_time": "0:11:14"} +{"current_steps": 2443, "total_steps": 2509, "loss": 0.7829, "learning_rate": 6.969181786913304e-08, "epoch": 0.9735976885523563, "percentage": 97.37, "elapsed_time": "6:49:36", "remaining_time": "0:11:03"} +{"current_steps": 2444, "total_steps": 2509, "loss": 0.7697, "learning_rate": 6.759712507711902e-08, "epoch": 0.9739962140081698, "percentage": 97.41, "elapsed_time": "6:49:47", "remaining_time": "0:10:53"} +{"current_steps": 2445, "total_steps": 2509, "loss": 0.7909, "learning_rate": 6.553434074955789e-08, "epoch": 0.9743947394639833, "percentage": 97.45, "elapsed_time": "6:49:57", "remaining_time": "0:10:43"} +{"current_steps": 2446, "total_steps": 2509, "loss": 0.8287, "learning_rate": 6.350346818862374e-08, "epoch": 0.9747932649197968, "percentage": 97.49, "elapsed_time": "6:50:07", "remaining_time": "0:10:33"} +{"current_steps": 2447, "total_steps": 2509, "loss": 0.7963, "learning_rate": 6.150451064540708e-08, "epoch": 0.9751917903756102, "percentage": 97.53, "elapsed_time": "6:50:17", "remaining_time": "0:10:23"} +{"current_steps": 2448, "total_steps": 2509, "loss": 0.7839, "learning_rate": 5.953747131990595e-08, "epoch": 0.9755903158314237, "percentage": 97.57, "elapsed_time": "6:50:27", "remaining_time": "0:10:13"} +{"current_steps": 2449, "total_steps": 2509, "loss": 0.7594, "learning_rate": 5.760235336102149e-08, "epoch": 0.9759888412872372, "percentage": 97.61, "elapsed_time": "6:50:37", "remaining_time": "0:10:03"} +{"current_steps": 2450, "total_steps": 2509, "loss": 0.7682, "learning_rate": 5.569915986656016e-08, "epoch": 0.9763873667430507, "percentage": 97.65, "elapsed_time": "6:50:47", "remaining_time": "0:09:53"} +{"current_steps": 2451, "total_steps": 2509, "loss": 0.7996, "learning_rate": 5.3827893883215964e-08, "epoch": 0.9767858921988642, "percentage": 97.69, "elapsed_time": "6:50:57", "remaining_time": "0:09:43"} +{"current_steps": 2452, "total_steps": 2509, "loss": 0.8085, "learning_rate": 5.198855840657491e-08, "epoch": 0.9771844176546777, "percentage": 97.73, "elapsed_time": "6:51:07", "remaining_time": "0:09:33"} +{"current_steps": 2453, "total_steps": 2509, "loss": 0.8068, "learning_rate": 5.01811563811061e-08, "epoch": 0.9775829431104912, "percentage": 97.77, "elapsed_time": "6:51:17", "remaining_time": "0:09:23"} +{"current_steps": 2454, "total_steps": 2509, "loss": 0.7886, "learning_rate": 4.8405690700161766e-08, "epoch": 0.9779814685663046, "percentage": 97.81, "elapsed_time": "6:51:27", "remaining_time": "0:09:13"} +{"current_steps": 2455, "total_steps": 2509, "loss": 0.7762, "learning_rate": 4.6662164205966143e-08, "epoch": 0.9783799940221182, "percentage": 97.85, "elapsed_time": "6:51:37", "remaining_time": "0:09:03"} +{"current_steps": 2456, "total_steps": 2509, "loss": 0.7884, "learning_rate": 4.495057968961769e-08, "epoch": 0.9787785194779317, "percentage": 97.89, "elapsed_time": "6:51:47", "remaining_time": "0:08:53"} +{"current_steps": 2457, "total_steps": 2509, "loss": 0.7692, "learning_rate": 4.327093989107578e-08, "epoch": 0.9791770449337451, "percentage": 97.93, "elapsed_time": "6:51:57", "remaining_time": "0:08:43"} +{"current_steps": 2458, "total_steps": 2509, "loss": 0.7869, "learning_rate": 4.162324749916735e-08, "epoch": 0.9795755703895587, "percentage": 97.97, "elapsed_time": "6:52:07", "remaining_time": "0:08:33"} +{"current_steps": 2459, "total_steps": 2509, "loss": 0.751, "learning_rate": 4.0007505151571365e-08, "epoch": 0.9799740958453721, "percentage": 98.01, "elapsed_time": "6:52:17", "remaining_time": "0:08:23"} +{"current_steps": 2460, "total_steps": 2509, "loss": 0.7696, "learning_rate": 3.8423715434823264e-08, "epoch": 0.9803726213011856, "percentage": 98.05, "elapsed_time": "6:52:27", "remaining_time": "0:08:12"} +{"current_steps": 2461, "total_steps": 2509, "loss": 0.7886, "learning_rate": 3.6871880884310486e-08, "epoch": 0.9807711467569991, "percentage": 98.09, "elapsed_time": "6:52:38", "remaining_time": "0:08:02"} +{"current_steps": 2462, "total_steps": 2509, "loss": 0.7831, "learning_rate": 3.5352003984259195e-08, "epoch": 0.9811696722128126, "percentage": 98.13, "elapsed_time": "6:52:48", "remaining_time": "0:07:52"} +{"current_steps": 2463, "total_steps": 2509, "loss": 0.7504, "learning_rate": 3.3864087167738705e-08, "epoch": 0.9815681976686261, "percentage": 98.17, "elapsed_time": "6:52:58", "remaining_time": "0:07:42"} +{"current_steps": 2464, "total_steps": 2509, "loss": 0.8465, "learning_rate": 3.240813281666144e-08, "epoch": 0.9819667231244396, "percentage": 98.21, "elapsed_time": "6:53:08", "remaining_time": "0:07:32"} +{"current_steps": 2465, "total_steps": 2509, "loss": 0.8142, "learning_rate": 3.09841432617608e-08, "epoch": 0.9823652485802531, "percentage": 98.25, "elapsed_time": "6:53:18", "remaining_time": "0:07:22"} +{"current_steps": 2466, "total_steps": 2509, "loss": 0.7721, "learning_rate": 2.959212078261553e-08, "epoch": 0.9827637740360665, "percentage": 98.29, "elapsed_time": "6:53:28", "remaining_time": "0:07:12"} +{"current_steps": 2467, "total_steps": 2509, "loss": 0.8169, "learning_rate": 2.823206760761643e-08, "epoch": 0.98316229949188, "percentage": 98.33, "elapsed_time": "6:53:38", "remaining_time": "0:07:02"} +{"current_steps": 2468, "total_steps": 2509, "loss": 0.7499, "learning_rate": 2.690398591398413e-08, "epoch": 0.9835608249476935, "percentage": 98.37, "elapsed_time": "6:53:48", "remaining_time": "0:06:52"} +{"current_steps": 2469, "total_steps": 2509, "loss": 0.8015, "learning_rate": 2.5607877827757975e-08, "epoch": 0.983959350403507, "percentage": 98.41, "elapsed_time": "6:53:58", "remaining_time": "0:06:42"} +{"current_steps": 2470, "total_steps": 2509, "loss": 0.8196, "learning_rate": 2.4343745423791588e-08, "epoch": 0.9843578758593206, "percentage": 98.45, "elapsed_time": "6:54:08", "remaining_time": "0:06:32"} +{"current_steps": 2471, "total_steps": 2509, "loss": 0.7935, "learning_rate": 2.3111590725750644e-08, "epoch": 0.984756401315134, "percentage": 98.49, "elapsed_time": "6:54:18", "remaining_time": "0:06:22"} +{"current_steps": 2472, "total_steps": 2509, "loss": 0.784, "learning_rate": 2.191141570610844e-08, "epoch": 0.9851549267709475, "percentage": 98.53, "elapsed_time": "6:54:28", "remaining_time": "0:06:12"} +{"current_steps": 2473, "total_steps": 2509, "loss": 0.7844, "learning_rate": 2.074322228614589e-08, "epoch": 0.9855534522267609, "percentage": 98.57, "elapsed_time": "6:54:38", "remaining_time": "0:06:02"} +{"current_steps": 2474, "total_steps": 2509, "loss": 0.7916, "learning_rate": 1.9607012335949306e-08, "epoch": 0.9859519776825745, "percentage": 98.61, "elapsed_time": "6:54:48", "remaining_time": "0:05:52"} +{"current_steps": 2475, "total_steps": 2509, "loss": 0.7595, "learning_rate": 1.850278767439928e-08, "epoch": 0.986350503138388, "percentage": 98.64, "elapsed_time": "6:54:58", "remaining_time": "0:05:42"} +{"current_steps": 2476, "total_steps": 2509, "loss": 0.7797, "learning_rate": 1.7430550069175157e-08, "epoch": 0.9867490285942014, "percentage": 98.68, "elapsed_time": "6:55:08", "remaining_time": "0:05:31"} +{"current_steps": 2477, "total_steps": 2509, "loss": 0.7851, "learning_rate": 1.6390301236755003e-08, "epoch": 0.987147554050015, "percentage": 98.72, "elapsed_time": "6:55:18", "remaining_time": "0:05:21"} +{"current_steps": 2478, "total_steps": 2509, "loss": 0.7918, "learning_rate": 1.53820428424023e-08, "epoch": 0.9875460795058284, "percentage": 98.76, "elapsed_time": "6:55:29", "remaining_time": "0:05:11"} +{"current_steps": 2479, "total_steps": 2509, "loss": 0.7453, "learning_rate": 1.4405776500170388e-08, "epoch": 0.9879446049616419, "percentage": 98.8, "elapsed_time": "6:55:39", "remaining_time": "0:05:01"} +{"current_steps": 2480, "total_steps": 2509, "loss": 0.812, "learning_rate": 1.346150377290023e-08, "epoch": 0.9883431304174554, "percentage": 98.84, "elapsed_time": "6:55:49", "remaining_time": "0:04:51"} +{"current_steps": 2481, "total_steps": 2509, "loss": 0.7823, "learning_rate": 1.2549226172213769e-08, "epoch": 0.9887416558732689, "percentage": 98.88, "elapsed_time": "6:55:59", "remaining_time": "0:04:41"} +{"current_steps": 2482, "total_steps": 2509, "loss": 0.8023, "learning_rate": 1.1668945158518352e-08, "epoch": 0.9891401813290824, "percentage": 98.92, "elapsed_time": "6:56:09", "remaining_time": "0:04:31"} +{"current_steps": 2483, "total_steps": 2509, "loss": 0.803, "learning_rate": 1.0820662140997862e-08, "epoch": 0.9895387067848959, "percentage": 98.96, "elapsed_time": "6:56:19", "remaining_time": "0:04:21"} +{"current_steps": 2484, "total_steps": 2509, "loss": 0.82, "learning_rate": 1.0004378477610489e-08, "epoch": 0.9899372322407094, "percentage": 99.0, "elapsed_time": "6:56:29", "remaining_time": "0:04:11"} +{"current_steps": 2485, "total_steps": 2509, "loss": 0.795, "learning_rate": 9.220095475090951e-09, "epoch": 0.9903357576965228, "percentage": 99.04, "elapsed_time": "6:56:39", "remaining_time": "0:04:01"} +{"current_steps": 2486, "total_steps": 2509, "loss": 0.7578, "learning_rate": 8.467814388948282e-09, "epoch": 0.9907342831523364, "percentage": 99.08, "elapsed_time": "6:56:49", "remaining_time": "0:03:51"} +{"current_steps": 2487, "total_steps": 2509, "loss": 0.7786, "learning_rate": 7.747536423456937e-09, "epoch": 0.9911328086081499, "percentage": 99.12, "elapsed_time": "6:56:59", "remaining_time": "0:03:41"} +{"current_steps": 2488, "total_steps": 2509, "loss": 0.8164, "learning_rate": 7.059262731661243e-09, "epoch": 0.9915313340639633, "percentage": 99.16, "elapsed_time": "6:57:09", "remaining_time": "0:03:31"} +{"current_steps": 2489, "total_steps": 2509, "loss": 0.7805, "learning_rate": 6.402994415377617e-09, "epoch": 0.9919298595197769, "percentage": 99.2, "elapsed_time": "6:57:19", "remaining_time": "0:03:21"} +{"current_steps": 2490, "total_steps": 2509, "loss": 0.7834, "learning_rate": 5.7787325251768e-09, "epoch": 0.9923283849755903, "percentage": 99.24, "elapsed_time": "6:57:29", "remaining_time": "0:03:11"} +{"current_steps": 2491, "total_steps": 2509, "loss": 0.7745, "learning_rate": 5.186478060403844e-09, "epoch": 0.9927269104314038, "percentage": 99.28, "elapsed_time": "6:57:39", "remaining_time": "0:03:01"} +{"current_steps": 2492, "total_steps": 2509, "loss": 0.7965, "learning_rate": 4.626231969155903e-09, "epoch": 0.9931254358872172, "percentage": 99.32, "elapsed_time": "6:57:49", "remaining_time": "0:02:51"} +{"current_steps": 2493, "total_steps": 2509, "loss": 0.817, "learning_rate": 4.0979951482955636e-09, "epoch": 0.9935239613430308, "percentage": 99.36, "elapsed_time": "6:57:59", "remaining_time": "0:02:40"} +{"current_steps": 2494, "total_steps": 2509, "loss": 0.7637, "learning_rate": 3.6017684434397348e-09, "epoch": 0.9939224867988443, "percentage": 99.4, "elapsed_time": "6:58:09", "remaining_time": "0:02:30"} +{"current_steps": 2495, "total_steps": 2509, "loss": 0.7688, "learning_rate": 3.1375526489685337e-09, "epoch": 0.9943210122546577, "percentage": 99.44, "elapsed_time": "6:58:20", "remaining_time": "0:02:20"} +{"current_steps": 2496, "total_steps": 2509, "loss": 0.7929, "learning_rate": 2.7053485080141827e-09, "epoch": 0.9947195377104713, "percentage": 99.48, "elapsed_time": "6:58:30", "remaining_time": "0:02:10"} +{"current_steps": 2497, "total_steps": 2509, "loss": 0.7701, "learning_rate": 2.3051567124587894e-09, "epoch": 0.9951180631662847, "percentage": 99.52, "elapsed_time": "6:58:40", "remaining_time": "0:02:00"} +{"current_steps": 2498, "total_steps": 2509, "loss": 0.808, "learning_rate": 1.936977902949888e-09, "epoch": 0.9955165886220982, "percentage": 99.56, "elapsed_time": "6:58:50", "remaining_time": "0:01:50"} +{"current_steps": 2499, "total_steps": 2509, "loss": 0.7752, "learning_rate": 1.6008126688737968e-09, "epoch": 0.9959151140779118, "percentage": 99.6, "elapsed_time": "6:59:00", "remaining_time": "0:01:40"} +{"current_steps": 2500, "total_steps": 2509, "loss": 0.7644, "learning_rate": 1.2966615483800404e-09, "epoch": 0.9963136395337252, "percentage": 99.64, "elapsed_time": "6:59:10", "remaining_time": "0:01:30"} +{"current_steps": 2501, "total_steps": 2509, "loss": 0.7876, "learning_rate": 1.0245250283613672e-09, "epoch": 0.9967121649895387, "percentage": 99.68, "elapsed_time": "6:59:29", "remaining_time": "0:01:20"} +{"current_steps": 2502, "total_steps": 2509, "loss": 0.8233, "learning_rate": 7.844035444648512e-10, "epoch": 0.9971106904453522, "percentage": 99.72, "elapsed_time": "6:59:39", "remaining_time": "0:01:10"} +{"current_steps": 2503, "total_steps": 2509, "loss": 0.7684, "learning_rate": 5.762974810852307e-10, "epoch": 0.9975092159011657, "percentage": 99.76, "elapsed_time": "6:59:49", "remaining_time": "0:01:00"} +{"current_steps": 2504, "total_steps": 2509, "loss": 0.7954, "learning_rate": 4.002071713626876e-10, "epoch": 0.9979077413569791, "percentage": 99.8, "elapsed_time": "6:59:59", "remaining_time": "0:00:50"} +{"current_steps": 2505, "total_steps": 2509, "loss": 0.788, "learning_rate": 2.5613289719172985e-10, "epoch": 0.9983062668127927, "percentage": 99.84, "elapsed_time": "7:00:09", "remaining_time": "0:00:40"} +{"current_steps": 2506, "total_steps": 2509, "loss": 0.8017, "learning_rate": 1.440748892100885e-10, "epoch": 0.9987047922686062, "percentage": 99.88, "elapsed_time": "7:00:19", "remaining_time": "0:00:30"} +{"current_steps": 2507, "total_steps": 2509, "loss": 0.803, "learning_rate": 6.403332680537943e-11, "epoch": 0.9991033177244196, "percentage": 99.92, "elapsed_time": "7:00:29", "remaining_time": "0:00:20"} +{"current_steps": 2508, "total_steps": 2509, "loss": 0.7746, "learning_rate": 1.6008338108441936e-11, "epoch": 0.9995018431802332, "percentage": 99.96, "elapsed_time": "7:00:39", "remaining_time": "0:00:10"} +{"current_steps": 2509, "total_steps": 2509, "loss": 0.7752, "learning_rate": 0.0, "epoch": 0.9999003686360466, "percentage": 100.0, "elapsed_time": "7:00:49", "remaining_time": "0:00:00"} +{"current_steps": 2509, "total_steps": 2509, "epoch": 0.9999003686360466, "percentage": 100.0, "elapsed_time": "7:00:57", "remaining_time": "0:00:00"}