File size: 1,779 Bytes
f757b5d
7ab68e7
f757b5d
 
 
c13dcd5
f757b5d
 
 
 
 
 
c13dcd5
f757b5d
 
 
7ef52ea
 
 
 
 
f757b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c76607
8acc6ba
7ef52ea
f757b5d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: hkayesh/twitter-disaster-nlp
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# hkayesh/twitter-disaster-nlp

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2529
- Train Accuracy: 0.9074
- Validation Loss: 0.4153
- Validation Accuracy: 0.8425
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1284, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 0.4349     | 0.8150         | 0.3635          | 0.8635              | 0     |
| 0.3233     | 0.8716         | 0.3878          | 0.8360              | 1     |
| 0.2529     | 0.9074         | 0.4153          | 0.8425              | 2     |


### Framework versions

- Transformers 4.17.0
- TensorFlow 2.6.3
- Datasets 2.1.0
- Tokenizers 0.11.6