--- license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_base_adamax_0001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9523809523809523 --- # hushem_1x_deit_base_adamax_0001_fold4 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0994 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.1538 | 0.6429 | | 1.1505 | 2.0 | 12 | 0.8388 | 0.6429 | | 1.1505 | 3.0 | 18 | 0.4410 | 0.8810 | | 0.4116 | 4.0 | 24 | 0.4518 | 0.7381 | | 0.0662 | 5.0 | 30 | 0.2100 | 0.9286 | | 0.0662 | 6.0 | 36 | 0.2101 | 0.9048 | | 0.0078 | 7.0 | 42 | 0.1502 | 0.9762 | | 0.0078 | 8.0 | 48 | 0.1199 | 0.9524 | | 0.002 | 9.0 | 54 | 0.1304 | 0.9524 | | 0.0009 | 10.0 | 60 | 0.1426 | 0.9524 | | 0.0009 | 11.0 | 66 | 0.1406 | 0.9524 | | 0.0006 | 12.0 | 72 | 0.1296 | 0.9524 | | 0.0006 | 13.0 | 78 | 0.1179 | 0.9524 | | 0.0005 | 14.0 | 84 | 0.1110 | 0.9524 | | 0.0005 | 15.0 | 90 | 0.1068 | 0.9524 | | 0.0005 | 16.0 | 96 | 0.1051 | 0.9524 | | 0.0004 | 17.0 | 102 | 0.1034 | 0.9524 | | 0.0004 | 18.0 | 108 | 0.1029 | 0.9524 | | 0.0004 | 19.0 | 114 | 0.1018 | 0.9524 | | 0.0004 | 20.0 | 120 | 0.1016 | 0.9524 | | 0.0004 | 21.0 | 126 | 0.1016 | 0.9524 | | 0.0003 | 22.0 | 132 | 0.1016 | 0.9524 | | 0.0003 | 23.0 | 138 | 0.1016 | 0.9524 | | 0.0003 | 24.0 | 144 | 0.1018 | 0.9524 | | 0.0003 | 25.0 | 150 | 0.1017 | 0.9524 | | 0.0003 | 26.0 | 156 | 0.1014 | 0.9524 | | 0.0003 | 27.0 | 162 | 0.1010 | 0.9524 | | 0.0003 | 28.0 | 168 | 0.1012 | 0.9524 | | 0.0003 | 29.0 | 174 | 0.1013 | 0.9524 | | 0.0003 | 30.0 | 180 | 0.1012 | 0.9524 | | 0.0003 | 31.0 | 186 | 0.1011 | 0.9524 | | 0.0003 | 32.0 | 192 | 0.1010 | 0.9524 | | 0.0003 | 33.0 | 198 | 0.1006 | 0.9524 | | 0.0003 | 34.0 | 204 | 0.1002 | 0.9524 | | 0.0003 | 35.0 | 210 | 0.0999 | 0.9524 | | 0.0003 | 36.0 | 216 | 0.0998 | 0.9524 | | 0.0003 | 37.0 | 222 | 0.0996 | 0.9524 | | 0.0003 | 38.0 | 228 | 0.0995 | 0.9524 | | 0.0003 | 39.0 | 234 | 0.0995 | 0.9524 | | 0.0003 | 40.0 | 240 | 0.0995 | 0.9524 | | 0.0003 | 41.0 | 246 | 0.0995 | 0.9524 | | 0.0003 | 42.0 | 252 | 0.0994 | 0.9524 | | 0.0003 | 43.0 | 258 | 0.0994 | 0.9524 | | 0.0003 | 44.0 | 264 | 0.0994 | 0.9524 | | 0.0003 | 45.0 | 270 | 0.0994 | 0.9524 | | 0.0003 | 46.0 | 276 | 0.0994 | 0.9524 | | 0.0003 | 47.0 | 282 | 0.0994 | 0.9524 | | 0.0003 | 48.0 | 288 | 0.0994 | 0.9524 | | 0.0003 | 49.0 | 294 | 0.0994 | 0.9524 | | 0.0003 | 50.0 | 300 | 0.0994 | 0.9524 | ### Framework versions - Transformers 4.35.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.14.1