File size: 4,868 Bytes
bb2d0ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_base_rms_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9523809523809523
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_base_rms_0001_fold4
This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3583
- Accuracy: 0.9524
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.104 | 1.0 | 219 | 0.2949 | 0.9286 |
| 0.01 | 2.0 | 438 | 0.1700 | 0.9524 |
| 0.0196 | 3.0 | 657 | 0.6452 | 0.8571 |
| 0.0007 | 4.0 | 876 | 0.1624 | 0.9762 |
| 0.0273 | 5.0 | 1095 | 0.4258 | 0.9048 |
| 0.0129 | 6.0 | 1314 | 0.1517 | 0.9524 |
| 0.0582 | 7.0 | 1533 | 0.6754 | 0.9048 |
| 0.0004 | 8.0 | 1752 | 0.2532 | 0.9286 |
| 0.0 | 9.0 | 1971 | 0.2443 | 0.9286 |
| 0.0 | 10.0 | 2190 | 0.2524 | 0.9286 |
| 0.0 | 11.0 | 2409 | 0.2616 | 0.9286 |
| 0.0 | 12.0 | 2628 | 0.2792 | 0.9286 |
| 0.0 | 13.0 | 2847 | 0.2936 | 0.9524 |
| 0.0 | 14.0 | 3066 | 0.3043 | 0.9524 |
| 0.0 | 15.0 | 3285 | 0.3082 | 0.9524 |
| 0.0 | 16.0 | 3504 | 0.3110 | 0.9524 |
| 0.0 | 17.0 | 3723 | 0.3145 | 0.9524 |
| 0.0 | 18.0 | 3942 | 0.3171 | 0.9524 |
| 0.0 | 19.0 | 4161 | 0.3231 | 0.9524 |
| 0.0 | 20.0 | 4380 | 0.3294 | 0.9524 |
| 0.0 | 21.0 | 4599 | 0.3348 | 0.9524 |
| 0.0 | 22.0 | 4818 | 0.3389 | 0.9524 |
| 0.0 | 23.0 | 5037 | 0.3420 | 0.9524 |
| 0.0 | 24.0 | 5256 | 0.3443 | 0.9524 |
| 0.0 | 25.0 | 5475 | 0.3462 | 0.9524 |
| 0.0 | 26.0 | 5694 | 0.3477 | 0.9524 |
| 0.0 | 27.0 | 5913 | 0.3490 | 0.9524 |
| 0.0 | 28.0 | 6132 | 0.3502 | 0.9524 |
| 0.0 | 29.0 | 6351 | 0.3512 | 0.9524 |
| 0.0 | 30.0 | 6570 | 0.3521 | 0.9524 |
| 0.0 | 31.0 | 6789 | 0.3528 | 0.9524 |
| 0.0 | 32.0 | 7008 | 0.3535 | 0.9524 |
| 0.0 | 33.0 | 7227 | 0.3541 | 0.9524 |
| 0.0 | 34.0 | 7446 | 0.3547 | 0.9524 |
| 0.0 | 35.0 | 7665 | 0.3552 | 0.9524 |
| 0.0 | 36.0 | 7884 | 0.3556 | 0.9524 |
| 0.0 | 37.0 | 8103 | 0.3560 | 0.9524 |
| 0.0 | 38.0 | 8322 | 0.3564 | 0.9524 |
| 0.0 | 39.0 | 8541 | 0.3567 | 0.9524 |
| 0.0 | 40.0 | 8760 | 0.3570 | 0.9524 |
| 0.0 | 41.0 | 8979 | 0.3573 | 0.9524 |
| 0.0 | 42.0 | 9198 | 0.3575 | 0.9524 |
| 0.0 | 43.0 | 9417 | 0.3577 | 0.9524 |
| 0.0 | 44.0 | 9636 | 0.3578 | 0.9524 |
| 0.0 | 45.0 | 9855 | 0.3580 | 0.9524 |
| 0.0 | 46.0 | 10074 | 0.3581 | 0.9524 |
| 0.0 | 47.0 | 10293 | 0.3582 | 0.9524 |
| 0.0 | 48.0 | 10512 | 0.3582 | 0.9524 |
| 0.0 | 49.0 | 10731 | 0.3583 | 0.9524 |
| 0.0 | 50.0 | 10950 | 0.3583 | 0.9524 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|