hkivancoral's picture
End of training
ffdf8d9
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_rms_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5333333333333333

hushem_5x_deit_base_rms_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4335
  • Accuracy: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7708 1.0 27 1.4022 0.2444
1.4249 2.0 54 1.3804 0.4444
1.3964 3.0 81 1.3634 0.2667
1.4087 4.0 108 1.4138 0.2444
1.5106 5.0 135 1.3226 0.3333
1.5674 6.0 162 1.3745 0.2444
1.5358 7.0 189 1.3178 0.3778
1.3201 8.0 216 1.0950 0.4
1.624 9.0 243 1.3141 0.3111
1.1174 10.0 270 1.4549 0.3778
1.1475 11.0 297 0.9651 0.5778
1.0882 12.0 324 0.9475 0.5778
1.0589 13.0 351 1.0498 0.5111
1.0658 14.0 378 0.9947 0.5333
0.9897 15.0 405 0.9894 0.5333
0.9767 16.0 432 0.9550 0.5778
0.984 17.0 459 0.9380 0.5778
1.0081 18.0 486 1.0509 0.4889
0.8973 19.0 513 0.9732 0.4444
0.8473 20.0 540 1.0049 0.4444
0.7086 21.0 567 1.0847 0.4889
0.7379 22.0 594 1.4535 0.4889
0.7312 23.0 621 1.2763 0.5333
0.6995 24.0 648 1.1444 0.3778
0.6998 25.0 675 1.1643 0.3778
0.7046 26.0 702 1.3603 0.5333
0.6675 27.0 729 1.3027 0.6222
0.6228 28.0 756 1.2068 0.4222
0.5922 29.0 783 1.6511 0.5333
0.6546 30.0 810 1.2512 0.4
0.5393 31.0 837 1.4819 0.5333
0.6185 32.0 864 1.3700 0.5111
0.6184 33.0 891 1.5080 0.5556
0.5907 34.0 918 1.4939 0.4222
0.5753 35.0 945 1.4588 0.3556
0.5557 36.0 972 1.4314 0.5111
0.4886 37.0 999 1.8012 0.5556
0.4981 38.0 1026 1.7648 0.5333
0.4253 39.0 1053 1.7892 0.5556
0.3579 40.0 1080 2.2102 0.5111
0.4246 41.0 1107 1.6607 0.5556
0.3838 42.0 1134 2.0356 0.5333
0.3957 43.0 1161 2.0405 0.5111
0.3149 44.0 1188 2.1882 0.5333
0.3434 45.0 1215 2.2887 0.5333
0.2478 46.0 1242 2.3165 0.5556
0.2362 47.0 1269 2.4365 0.5333
0.2191 48.0 1296 2.4233 0.5333
0.1896 49.0 1323 2.4335 0.5333
0.2369 50.0 1350 2.4335 0.5333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0