File size: 4,815 Bytes
97c2eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_sgd_0001_fold2
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.13333333333333333
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_base_sgd_0001_fold2

This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4239
- Accuracy: 0.1333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.43          | 1.0   | 27   | 1.4766          | 0.1333   |
| 1.4102        | 2.0   | 54   | 1.4737          | 0.1333   |
| 1.4007        | 3.0   | 81   | 1.4709          | 0.1333   |
| 1.4122        | 4.0   | 108  | 1.4682          | 0.1333   |
| 1.4031        | 5.0   | 135  | 1.4658          | 0.1333   |
| 1.4094        | 6.0   | 162  | 1.4633          | 0.1333   |
| 1.3941        | 7.0   | 189  | 1.4611          | 0.1333   |
| 1.4105        | 8.0   | 216  | 1.4588          | 0.1333   |
| 1.4006        | 9.0   | 243  | 1.4567          | 0.1333   |
| 1.3895        | 10.0  | 270  | 1.4547          | 0.1333   |
| 1.3922        | 11.0  | 297  | 1.4528          | 0.1333   |
| 1.3661        | 12.0  | 324  | 1.4510          | 0.1333   |
| 1.397         | 13.0  | 351  | 1.4492          | 0.1333   |
| 1.3778        | 14.0  | 378  | 1.4476          | 0.1333   |
| 1.3888        | 15.0  | 405  | 1.4461          | 0.1333   |
| 1.3865        | 16.0  | 432  | 1.4446          | 0.1333   |
| 1.3782        | 17.0  | 459  | 1.4432          | 0.1333   |
| 1.3766        | 18.0  | 486  | 1.4418          | 0.1333   |
| 1.3767        | 19.0  | 513  | 1.4404          | 0.1333   |
| 1.3782        | 20.0  | 540  | 1.4392          | 0.1333   |
| 1.3664        | 21.0  | 567  | 1.4381          | 0.1333   |
| 1.3644        | 22.0  | 594  | 1.4370          | 0.1333   |
| 1.386         | 23.0  | 621  | 1.4359          | 0.1333   |
| 1.3679        | 24.0  | 648  | 1.4349          | 0.1333   |
| 1.3604        | 25.0  | 675  | 1.4339          | 0.1333   |
| 1.3727        | 26.0  | 702  | 1.4330          | 0.1333   |
| 1.3624        | 27.0  | 729  | 1.4321          | 0.1333   |
| 1.3512        | 28.0  | 756  | 1.4313          | 0.1333   |
| 1.3641        | 29.0  | 783  | 1.4305          | 0.1333   |
| 1.3697        | 30.0  | 810  | 1.4298          | 0.1333   |
| 1.3661        | 31.0  | 837  | 1.4292          | 0.1333   |
| 1.3762        | 32.0  | 864  | 1.4286          | 0.1333   |
| 1.3653        | 33.0  | 891  | 1.4280          | 0.1333   |
| 1.3526        | 34.0  | 918  | 1.4274          | 0.1333   |
| 1.3565        | 35.0  | 945  | 1.4269          | 0.1333   |
| 1.3671        | 36.0  | 972  | 1.4265          | 0.1333   |
| 1.3721        | 37.0  | 999  | 1.4261          | 0.1333   |
| 1.3579        | 38.0  | 1026 | 1.4257          | 0.1333   |
| 1.3662        | 39.0  | 1053 | 1.4254          | 0.1333   |
| 1.3491        | 40.0  | 1080 | 1.4250          | 0.1333   |
| 1.3508        | 41.0  | 1107 | 1.4248          | 0.1333   |
| 1.3555        | 42.0  | 1134 | 1.4245          | 0.1333   |
| 1.3427        | 43.0  | 1161 | 1.4244          | 0.1333   |
| 1.3543        | 44.0  | 1188 | 1.4242          | 0.1333   |
| 1.3592        | 45.0  | 1215 | 1.4241          | 0.1333   |
| 1.3632        | 46.0  | 1242 | 1.4240          | 0.1333   |
| 1.3606        | 47.0  | 1269 | 1.4239          | 0.1333   |
| 1.3593        | 48.0  | 1296 | 1.4239          | 0.1333   |
| 1.3726        | 49.0  | 1323 | 1.4239          | 0.1333   |
| 1.3608        | 50.0  | 1350 | 1.4239          | 0.1333   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0