hkivancoral commited on
Commit
39e3280
1 Parent(s): 8c1d7f6

End of training

Browse files
Files changed (2) hide show
  1. README.md +125 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-large-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: smids_10x_beit_large_sgd_0001_fold4
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8583333333333333
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # smids_10x_beit_large_sgd_0001_fold4
32
+
33
+ This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.3577
36
+ - Accuracy: 0.8583
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 32
57
+ - eval_batch_size: 32
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 50
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 0.956 | 1.0 | 750 | 0.9742 | 0.4667 |
69
+ | 0.7783 | 2.0 | 1500 | 0.8200 | 0.63 |
70
+ | 0.7323 | 3.0 | 2250 | 0.7096 | 0.71 |
71
+ | 0.6337 | 4.0 | 3000 | 0.6341 | 0.7517 |
72
+ | 0.5065 | 5.0 | 3750 | 0.5795 | 0.775 |
73
+ | 0.4965 | 6.0 | 4500 | 0.5386 | 0.8 |
74
+ | 0.4578 | 7.0 | 5250 | 0.5091 | 0.8117 |
75
+ | 0.4692 | 8.0 | 6000 | 0.4857 | 0.825 |
76
+ | 0.4711 | 9.0 | 6750 | 0.4676 | 0.8333 |
77
+ | 0.3709 | 10.0 | 7500 | 0.4525 | 0.835 |
78
+ | 0.4051 | 11.0 | 8250 | 0.4402 | 0.8367 |
79
+ | 0.4533 | 12.0 | 9000 | 0.4305 | 0.8417 |
80
+ | 0.3537 | 13.0 | 9750 | 0.4215 | 0.8467 |
81
+ | 0.4025 | 14.0 | 10500 | 0.4147 | 0.8483 |
82
+ | 0.3254 | 15.0 | 11250 | 0.4082 | 0.8467 |
83
+ | 0.3312 | 16.0 | 12000 | 0.4031 | 0.8467 |
84
+ | 0.2854 | 17.0 | 12750 | 0.3983 | 0.8483 |
85
+ | 0.3355 | 18.0 | 13500 | 0.3942 | 0.8517 |
86
+ | 0.3881 | 19.0 | 14250 | 0.3905 | 0.8483 |
87
+ | 0.3257 | 20.0 | 15000 | 0.3873 | 0.8517 |
88
+ | 0.3303 | 21.0 | 15750 | 0.3846 | 0.8483 |
89
+ | 0.3308 | 22.0 | 16500 | 0.3815 | 0.8517 |
90
+ | 0.3025 | 23.0 | 17250 | 0.3791 | 0.85 |
91
+ | 0.3591 | 24.0 | 18000 | 0.3770 | 0.8517 |
92
+ | 0.3426 | 25.0 | 18750 | 0.3750 | 0.8567 |
93
+ | 0.2909 | 26.0 | 19500 | 0.3737 | 0.8567 |
94
+ | 0.3106 | 27.0 | 20250 | 0.3719 | 0.855 |
95
+ | 0.3129 | 28.0 | 21000 | 0.3704 | 0.855 |
96
+ | 0.2957 | 29.0 | 21750 | 0.3688 | 0.855 |
97
+ | 0.2639 | 30.0 | 22500 | 0.3673 | 0.855 |
98
+ | 0.2821 | 31.0 | 23250 | 0.3660 | 0.855 |
99
+ | 0.2912 | 32.0 | 24000 | 0.3649 | 0.8567 |
100
+ | 0.3006 | 33.0 | 24750 | 0.3640 | 0.8583 |
101
+ | 0.3129 | 34.0 | 25500 | 0.3632 | 0.8583 |
102
+ | 0.2463 | 35.0 | 26250 | 0.3625 | 0.86 |
103
+ | 0.3133 | 36.0 | 27000 | 0.3619 | 0.8583 |
104
+ | 0.3061 | 37.0 | 27750 | 0.3612 | 0.8583 |
105
+ | 0.3206 | 38.0 | 28500 | 0.3606 | 0.8583 |
106
+ | 0.3433 | 39.0 | 29250 | 0.3601 | 0.8583 |
107
+ | 0.3138 | 40.0 | 30000 | 0.3597 | 0.8583 |
108
+ | 0.2988 | 41.0 | 30750 | 0.3593 | 0.8583 |
109
+ | 0.3075 | 42.0 | 31500 | 0.3589 | 0.8583 |
110
+ | 0.3059 | 43.0 | 32250 | 0.3587 | 0.8583 |
111
+ | 0.3142 | 44.0 | 33000 | 0.3585 | 0.8583 |
112
+ | 0.3034 | 45.0 | 33750 | 0.3583 | 0.8583 |
113
+ | 0.2744 | 46.0 | 34500 | 0.3580 | 0.8583 |
114
+ | 0.2599 | 47.0 | 35250 | 0.3579 | 0.8583 |
115
+ | 0.2643 | 48.0 | 36000 | 0.3578 | 0.8583 |
116
+ | 0.2927 | 49.0 | 36750 | 0.3577 | 0.8583 |
117
+ | 0.2381 | 50.0 | 37500 | 0.3577 | 0.8583 |
118
+
119
+
120
+ ### Framework versions
121
+
122
+ - Transformers 4.32.1
123
+ - Pytorch 2.1.0+cu121
124
+ - Datasets 2.12.0
125
+ - Tokenizers 0.13.2
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed52070e30fd2e57217c165bbf6c03025870c8abbd2cf1b9d07a58e4b2cb3d67
3
  size 1213785638
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3992e7e5841817f9c07414310b4a32bcb80536738bfa2ad3a4ee4cd54719a398
3
  size 1213785638