File size: 36,888 Bytes
373a3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
2023-10-23 19:29:49,570 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,571 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,571 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,571 Train:  966 sentences
2023-10-23 19:29:49,571         (train_with_dev=False, train_with_test=False)
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,571 Training Params:
2023-10-23 19:29:49,571  - learning_rate: "3e-05" 
2023-10-23 19:29:49,571  - mini_batch_size: "4"
2023-10-23 19:29:49,571  - max_epochs: "10"
2023-10-23 19:29:49,571  - shuffle: "True"
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,571 Plugins:
2023-10-23 19:29:49,571  - TensorboardLogger
2023-10-23 19:29:49,571  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,572 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 19:29:49,572  - metric: "('micro avg', 'f1-score')"
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,572 Computation:
2023-10-23 19:29:49,572  - compute on device: cuda:0
2023-10-23 19:29:49,572  - embedding storage: none
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,572 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
2023-10-23 19:29:49,572 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 19:29:51,021 epoch 1 - iter 24/242 - loss 2.98287844 - time (sec): 1.45 - samples/sec: 1489.27 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:29:52,539 epoch 1 - iter 48/242 - loss 2.26117522 - time (sec): 2.97 - samples/sec: 1617.92 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:29:54,030 epoch 1 - iter 72/242 - loss 1.76926638 - time (sec): 4.46 - samples/sec: 1573.78 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:29:55,538 epoch 1 - iter 96/242 - loss 1.46345492 - time (sec): 5.97 - samples/sec: 1585.41 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:29:57,026 epoch 1 - iter 120/242 - loss 1.25478029 - time (sec): 7.45 - samples/sec: 1587.11 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:29:58,565 epoch 1 - iter 144/242 - loss 1.09074253 - time (sec): 8.99 - samples/sec: 1608.26 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:30:00,155 epoch 1 - iter 168/242 - loss 0.98154842 - time (sec): 10.58 - samples/sec: 1618.75 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:30:01,639 epoch 1 - iter 192/242 - loss 0.89632668 - time (sec): 12.07 - samples/sec: 1618.33 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:30:03,136 epoch 1 - iter 216/242 - loss 0.82169295 - time (sec): 13.56 - samples/sec: 1612.00 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:30:04,692 epoch 1 - iter 240/242 - loss 0.75910623 - time (sec): 15.12 - samples/sec: 1620.78 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:30:04,820 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:04,820 EPOCH 1 done: loss 0.7531 - lr: 0.000030
2023-10-23 19:30:05,632 DEV : loss 0.1827384978532791 - f1-score (micro avg)  0.6213
2023-10-23 19:30:05,636 saving best model
2023-10-23 19:30:06,104 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:07,610 epoch 2 - iter 24/242 - loss 0.13604524 - time (sec): 1.51 - samples/sec: 1685.70 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:30:09,092 epoch 2 - iter 48/242 - loss 0.16051416 - time (sec): 2.99 - samples/sec: 1606.50 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:30:10,571 epoch 2 - iter 72/242 - loss 0.16266687 - time (sec): 4.47 - samples/sec: 1587.93 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:30:12,084 epoch 2 - iter 96/242 - loss 0.16915945 - time (sec): 5.98 - samples/sec: 1586.67 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:30:13,664 epoch 2 - iter 120/242 - loss 0.16054725 - time (sec): 7.56 - samples/sec: 1614.35 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:30:15,218 epoch 2 - iter 144/242 - loss 0.15751912 - time (sec): 9.11 - samples/sec: 1619.90 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:30:16,764 epoch 2 - iter 168/242 - loss 0.15934129 - time (sec): 10.66 - samples/sec: 1625.26 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:30:18,272 epoch 2 - iter 192/242 - loss 0.15641142 - time (sec): 12.17 - samples/sec: 1617.13 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:30:19,801 epoch 2 - iter 216/242 - loss 0.15506669 - time (sec): 13.70 - samples/sec: 1623.99 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:30:21,317 epoch 2 - iter 240/242 - loss 0.15220355 - time (sec): 15.21 - samples/sec: 1617.97 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:30:21,431 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:21,431 EPOCH 2 done: loss 0.1516 - lr: 0.000027
2023-10-23 19:30:22,122 DEV : loss 0.12770959734916687 - f1-score (micro avg)  0.7935
2023-10-23 19:30:22,125 saving best model
2023-10-23 19:30:22,824 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:24,302 epoch 3 - iter 24/242 - loss 0.12719161 - time (sec): 1.48 - samples/sec: 1577.87 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:30:25,824 epoch 3 - iter 48/242 - loss 0.11257977 - time (sec): 3.00 - samples/sec: 1578.28 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:30:27,346 epoch 3 - iter 72/242 - loss 0.11151491 - time (sec): 4.52 - samples/sec: 1628.09 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:30:28,909 epoch 3 - iter 96/242 - loss 0.10559088 - time (sec): 6.08 - samples/sec: 1644.85 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:30:30,427 epoch 3 - iter 120/242 - loss 0.09317932 - time (sec): 7.60 - samples/sec: 1671.53 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:30:31,909 epoch 3 - iter 144/242 - loss 0.09460460 - time (sec): 9.08 - samples/sec: 1652.42 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:30:33,459 epoch 3 - iter 168/242 - loss 0.09435856 - time (sec): 10.63 - samples/sec: 1643.72 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:30:34,949 epoch 3 - iter 192/242 - loss 0.09314101 - time (sec): 12.12 - samples/sec: 1621.29 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:30:36,529 epoch 3 - iter 216/242 - loss 0.10155585 - time (sec): 13.70 - samples/sec: 1619.78 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:30:38,045 epoch 3 - iter 240/242 - loss 0.09838725 - time (sec): 15.22 - samples/sec: 1619.20 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:30:38,158 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:38,159 EPOCH 3 done: loss 0.0980 - lr: 0.000023
2023-10-23 19:30:38,852 DEV : loss 0.1285228729248047 - f1-score (micro avg)  0.8362
2023-10-23 19:30:38,856 saving best model
2023-10-23 19:30:39,547 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:41,015 epoch 4 - iter 24/242 - loss 0.04685614 - time (sec): 1.47 - samples/sec: 1580.95 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:30:42,569 epoch 4 - iter 48/242 - loss 0.08110896 - time (sec): 3.02 - samples/sec: 1600.25 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:30:44,072 epoch 4 - iter 72/242 - loss 0.07997580 - time (sec): 4.52 - samples/sec: 1640.82 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:30:45,644 epoch 4 - iter 96/242 - loss 0.07417430 - time (sec): 6.10 - samples/sec: 1628.90 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:30:47,137 epoch 4 - iter 120/242 - loss 0.06583957 - time (sec): 7.59 - samples/sec: 1608.25 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:30:48,700 epoch 4 - iter 144/242 - loss 0.06891605 - time (sec): 9.15 - samples/sec: 1633.63 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:30:50,232 epoch 4 - iter 168/242 - loss 0.06741911 - time (sec): 10.68 - samples/sec: 1628.92 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:30:51,785 epoch 4 - iter 192/242 - loss 0.06826652 - time (sec): 12.24 - samples/sec: 1620.78 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:30:53,271 epoch 4 - iter 216/242 - loss 0.06909254 - time (sec): 13.72 - samples/sec: 1608.79 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:30:54,785 epoch 4 - iter 240/242 - loss 0.06791650 - time (sec): 15.24 - samples/sec: 1612.41 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:30:54,901 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:54,902 EPOCH 4 done: loss 0.0675 - lr: 0.000020
2023-10-23 19:30:55,598 DEV : loss 0.16268931329250336 - f1-score (micro avg)  0.8259
2023-10-23 19:30:55,602 ----------------------------------------------------------------------------------------------------
2023-10-23 19:30:57,140 epoch 5 - iter 24/242 - loss 0.05705890 - time (sec): 1.54 - samples/sec: 1606.57 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:30:58,668 epoch 5 - iter 48/242 - loss 0.05415032 - time (sec): 3.07 - samples/sec: 1623.01 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:31:00,159 epoch 5 - iter 72/242 - loss 0.05768220 - time (sec): 4.56 - samples/sec: 1624.60 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:31:01,659 epoch 5 - iter 96/242 - loss 0.05428573 - time (sec): 6.06 - samples/sec: 1634.34 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:31:03,167 epoch 5 - iter 120/242 - loss 0.05240841 - time (sec): 7.56 - samples/sec: 1637.80 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:31:04,711 epoch 5 - iter 144/242 - loss 0.04914866 - time (sec): 9.11 - samples/sec: 1636.15 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:31:06,237 epoch 5 - iter 168/242 - loss 0.04959201 - time (sec): 10.64 - samples/sec: 1630.73 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:31:07,753 epoch 5 - iter 192/242 - loss 0.04995992 - time (sec): 12.15 - samples/sec: 1605.06 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:31:09,284 epoch 5 - iter 216/242 - loss 0.04891403 - time (sec): 13.68 - samples/sec: 1612.94 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:31:10,852 epoch 5 - iter 240/242 - loss 0.04560757 - time (sec): 15.25 - samples/sec: 1615.49 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:31:10,962 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:10,962 EPOCH 5 done: loss 0.0457 - lr: 0.000017
2023-10-23 19:31:11,659 DEV : loss 0.1693263053894043 - f1-score (micro avg)  0.8425
2023-10-23 19:31:11,663 saving best model
2023-10-23 19:31:12,458 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:13,964 epoch 6 - iter 24/242 - loss 0.00754029 - time (sec): 1.50 - samples/sec: 1492.40 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:31:15,436 epoch 6 - iter 48/242 - loss 0.02913193 - time (sec): 2.98 - samples/sec: 1546.80 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:31:16,992 epoch 6 - iter 72/242 - loss 0.03202316 - time (sec): 4.53 - samples/sec: 1616.66 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:31:18,538 epoch 6 - iter 96/242 - loss 0.03013955 - time (sec): 6.08 - samples/sec: 1599.96 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:31:20,088 epoch 6 - iter 120/242 - loss 0.03080415 - time (sec): 7.63 - samples/sec: 1645.91 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:31:21,638 epoch 6 - iter 144/242 - loss 0.03003144 - time (sec): 9.18 - samples/sec: 1655.31 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:31:23,126 epoch 6 - iter 168/242 - loss 0.03283920 - time (sec): 10.67 - samples/sec: 1630.94 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:31:24,642 epoch 6 - iter 192/242 - loss 0.03395577 - time (sec): 12.18 - samples/sec: 1627.18 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:31:26,111 epoch 6 - iter 216/242 - loss 0.03345099 - time (sec): 13.65 - samples/sec: 1613.56 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:31:27,662 epoch 6 - iter 240/242 - loss 0.03181677 - time (sec): 15.20 - samples/sec: 1615.60 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:31:27,785 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:27,786 EPOCH 6 done: loss 0.0322 - lr: 0.000013
2023-10-23 19:31:28,484 DEV : loss 0.1637829840183258 - f1-score (micro avg)  0.8688
2023-10-23 19:31:28,488 saving best model
2023-10-23 19:31:29,085 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:30,628 epoch 7 - iter 24/242 - loss 0.01992873 - time (sec): 1.54 - samples/sec: 1671.67 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:31:32,109 epoch 7 - iter 48/242 - loss 0.01958366 - time (sec): 3.02 - samples/sec: 1562.88 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:31:33,628 epoch 7 - iter 72/242 - loss 0.02160298 - time (sec): 4.54 - samples/sec: 1544.62 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:31:35,152 epoch 7 - iter 96/242 - loss 0.03093927 - time (sec): 6.07 - samples/sec: 1567.90 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:31:36,645 epoch 7 - iter 120/242 - loss 0.02876334 - time (sec): 7.56 - samples/sec: 1534.47 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:31:38,197 epoch 7 - iter 144/242 - loss 0.02510561 - time (sec): 9.11 - samples/sec: 1585.38 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:31:39,738 epoch 7 - iter 168/242 - loss 0.02481182 - time (sec): 10.65 - samples/sec: 1606.81 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:31:41,220 epoch 7 - iter 192/242 - loss 0.02407380 - time (sec): 12.13 - samples/sec: 1599.71 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:31:42,729 epoch 7 - iter 216/242 - loss 0.02445811 - time (sec): 13.64 - samples/sec: 1601.31 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:31:44,297 epoch 7 - iter 240/242 - loss 0.02432614 - time (sec): 15.21 - samples/sec: 1611.23 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:31:44,421 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:44,422 EPOCH 7 done: loss 0.0241 - lr: 0.000010
2023-10-23 19:31:45,119 DEV : loss 0.17772217094898224 - f1-score (micro avg)  0.86
2023-10-23 19:31:45,122 ----------------------------------------------------------------------------------------------------
2023-10-23 19:31:46,627 epoch 8 - iter 24/242 - loss 0.03288147 - time (sec): 1.50 - samples/sec: 1679.19 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:31:48,138 epoch 8 - iter 48/242 - loss 0.01853878 - time (sec): 3.01 - samples/sec: 1642.54 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:31:49,644 epoch 8 - iter 72/242 - loss 0.01634984 - time (sec): 4.52 - samples/sec: 1632.94 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:31:51,166 epoch 8 - iter 96/242 - loss 0.01817815 - time (sec): 6.04 - samples/sec: 1617.32 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:31:52,747 epoch 8 - iter 120/242 - loss 0.02189944 - time (sec): 7.62 - samples/sec: 1621.72 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:31:54,346 epoch 8 - iter 144/242 - loss 0.01859034 - time (sec): 9.22 - samples/sec: 1630.24 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:31:55,804 epoch 8 - iter 168/242 - loss 0.02102774 - time (sec): 10.68 - samples/sec: 1616.58 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:31:57,342 epoch 8 - iter 192/242 - loss 0.01985651 - time (sec): 12.22 - samples/sec: 1609.44 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:31:58,848 epoch 8 - iter 216/242 - loss 0.01865202 - time (sec): 13.73 - samples/sec: 1609.88 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:32:00,386 epoch 8 - iter 240/242 - loss 0.01800372 - time (sec): 15.26 - samples/sec: 1606.30 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:32:00,506 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:00,507 EPOCH 8 done: loss 0.0178 - lr: 0.000007
2023-10-23 19:32:01,209 DEV : loss 0.194981187582016 - f1-score (micro avg)  0.8373
2023-10-23 19:32:01,213 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:02,754 epoch 9 - iter 24/242 - loss 0.02859587 - time (sec): 1.54 - samples/sec: 1628.93 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:32:04,317 epoch 9 - iter 48/242 - loss 0.02766799 - time (sec): 3.10 - samples/sec: 1579.06 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:32:05,850 epoch 9 - iter 72/242 - loss 0.02277408 - time (sec): 4.64 - samples/sec: 1589.03 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:32:07,389 epoch 9 - iter 96/242 - loss 0.01930538 - time (sec): 6.18 - samples/sec: 1617.33 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:32:08,917 epoch 9 - iter 120/242 - loss 0.01681611 - time (sec): 7.70 - samples/sec: 1623.29 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:32:10,404 epoch 9 - iter 144/242 - loss 0.01500288 - time (sec): 9.19 - samples/sec: 1618.61 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:32:11,935 epoch 9 - iter 168/242 - loss 0.01351396 - time (sec): 10.72 - samples/sec: 1600.59 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:32:13,428 epoch 9 - iter 192/242 - loss 0.01220532 - time (sec): 12.21 - samples/sec: 1592.90 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:32:14,944 epoch 9 - iter 216/242 - loss 0.01149296 - time (sec): 13.73 - samples/sec: 1606.89 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:32:16,481 epoch 9 - iter 240/242 - loss 0.01091838 - time (sec): 15.27 - samples/sec: 1613.65 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:32:16,595 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:16,596 EPOCH 9 done: loss 0.0109 - lr: 0.000003
2023-10-23 19:32:17,294 DEV : loss 0.1826126128435135 - f1-score (micro avg)  0.8607
2023-10-23 19:32:17,298 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:18,855 epoch 10 - iter 24/242 - loss 0.01137724 - time (sec): 1.56 - samples/sec: 1703.46 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:32:20,347 epoch 10 - iter 48/242 - loss 0.00797534 - time (sec): 3.05 - samples/sec: 1654.01 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:32:21,927 epoch 10 - iter 72/242 - loss 0.00713636 - time (sec): 4.63 - samples/sec: 1662.10 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:32:23,402 epoch 10 - iter 96/242 - loss 0.00601590 - time (sec): 6.10 - samples/sec: 1594.00 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:32:24,907 epoch 10 - iter 120/242 - loss 0.00677766 - time (sec): 7.61 - samples/sec: 1612.58 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:32:26,407 epoch 10 - iter 144/242 - loss 0.00631534 - time (sec): 9.11 - samples/sec: 1625.46 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:32:27,926 epoch 10 - iter 168/242 - loss 0.00589143 - time (sec): 10.63 - samples/sec: 1622.92 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:32:29,420 epoch 10 - iter 192/242 - loss 0.00766039 - time (sec): 12.12 - samples/sec: 1617.90 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:32:31,004 epoch 10 - iter 216/242 - loss 0.00876882 - time (sec): 13.71 - samples/sec: 1621.94 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:32:32,544 epoch 10 - iter 240/242 - loss 0.00939067 - time (sec): 15.25 - samples/sec: 1610.64 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:32:32,664 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:32,665 EPOCH 10 done: loss 0.0093 - lr: 0.000000
2023-10-23 19:32:33,365 DEV : loss 0.18982915580272675 - f1-score (micro avg)  0.8546
2023-10-23 19:32:33,839 ----------------------------------------------------------------------------------------------------
2023-10-23 19:32:33,840 Loading model from best epoch ...
2023-10-23 19:32:35,389 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 19:32:36,253 
Results:
- F-score (micro) 0.8154
- F-score (macro) 0.5535
- Accuracy 0.7064

By class:
              precision    recall  f1-score   support

        pers     0.8777    0.8777    0.8777       139
       scope     0.8421    0.8682    0.8550       129
        work     0.6593    0.7500    0.7018        80
         loc     0.6667    0.2222    0.3333         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8087    0.8222    0.8154       360
   macro avg     0.6092    0.5436    0.5535       360
weighted avg     0.8038    0.8222    0.8095       360

2023-10-23 19:32:36,253 ----------------------------------------------------------------------------------------------------