Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697657143.46dc0c540dd0.3108.9 +3 -0
- test.tsv +0 -0
- training.log +248 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42fcbcf7cbd47b9651c70bf36449cb3c3b612957c3ec5320943da1d719b414eb
|
3 |
+
size 19050210
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 19:26:09 0.0000 1.1200 0.3651 0.2733 0.1930 0.2263 0.1348
|
3 |
+
2 19:26:40 0.0000 0.3944 0.2797 0.4438 0.4633 0.4533 0.3169
|
4 |
+
3 19:27:10 0.0000 0.3243 0.2566 0.4598 0.5109 0.4840 0.3447
|
5 |
+
4 19:27:41 0.0000 0.2808 0.2500 0.4986 0.5229 0.5105 0.3671
|
6 |
+
5 19:28:11 0.0000 0.2542 0.2327 0.5035 0.5727 0.5359 0.3943
|
7 |
+
6 19:28:42 0.0000 0.2325 0.2366 0.5217 0.5790 0.5489 0.4060
|
8 |
+
7 19:29:13 0.0000 0.2189 0.2305 0.5327 0.5916 0.5607 0.4165
|
9 |
+
8 19:29:44 0.0000 0.2038 0.2288 0.5249 0.6094 0.5640 0.4189
|
10 |
+
9 19:30:15 0.0000 0.1978 0.2332 0.5372 0.6002 0.5669 0.4228
|
11 |
+
10 19:30:46 0.0000 0.1932 0.2344 0.5345 0.6031 0.5667 0.4227
|
runs/events.out.tfevents.1697657143.46dc0c540dd0.3108.9
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:401151bf18af51ac0083eb8f4d6777a352d915cb132b74d2435afd5cf417e18c
|
3 |
+
size 825716
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 19:25:43,700 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 19:25:43,700 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 19:25:43,700 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 19:25:43,700 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-10-18 19:25:43,700 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 19:25:43,700 Train: 5901 sentences
|
55 |
+
2023-10-18 19:25:43,700 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 19:25:43,701 Training Params:
|
58 |
+
2023-10-18 19:25:43,701 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 19:25:43,701 - mini_batch_size: "4"
|
60 |
+
2023-10-18 19:25:43,701 - max_epochs: "10"
|
61 |
+
2023-10-18 19:25:43,701 - shuffle: "True"
|
62 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 19:25:43,701 Plugins:
|
64 |
+
2023-10-18 19:25:43,701 - TensorboardLogger
|
65 |
+
2023-10-18 19:25:43,701 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 19:25:43,701 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 19:25:43,701 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 19:25:43,701 Computation:
|
71 |
+
2023-10-18 19:25:43,701 - compute on device: cuda:0
|
72 |
+
2023-10-18 19:25:43,701 - embedding storage: none
|
73 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 19:25:43,701 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
75 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 19:25:43,701 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 19:25:43,701 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 19:25:46,078 epoch 1 - iter 147/1476 - loss 3.45082650 - time (sec): 2.38 - samples/sec: 6855.90 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 19:25:48,564 epoch 1 - iter 294/1476 - loss 2.95264139 - time (sec): 4.86 - samples/sec: 6711.01 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 19:25:50,700 epoch 1 - iter 441/1476 - loss 2.30518090 - time (sec): 7.00 - samples/sec: 7409.64 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 19:25:52,905 epoch 1 - iter 588/1476 - loss 1.93520085 - time (sec): 9.20 - samples/sec: 7380.55 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 19:25:55,256 epoch 1 - iter 735/1476 - loss 1.69071046 - time (sec): 11.55 - samples/sec: 7222.26 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-18 19:25:57,580 epoch 1 - iter 882/1476 - loss 1.53189135 - time (sec): 13.88 - samples/sec: 7155.68 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-18 19:25:59,878 epoch 1 - iter 1029/1476 - loss 1.39345233 - time (sec): 16.18 - samples/sec: 7142.25 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-18 19:26:02,193 epoch 1 - iter 1176/1476 - loss 1.29402372 - time (sec): 18.49 - samples/sec: 7083.22 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-18 19:26:04,530 epoch 1 - iter 1323/1476 - loss 1.20850834 - time (sec): 20.83 - samples/sec: 7090.57 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-18 19:26:06,892 epoch 1 - iter 1470/1476 - loss 1.12176032 - time (sec): 23.19 - samples/sec: 7158.61 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-18 19:26:06,982 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 19:26:06,982 EPOCH 1 done: loss 1.1200 - lr: 0.000050
|
90 |
+
2023-10-18 19:26:09,849 DEV : loss 0.3651462495326996 - f1-score (micro avg) 0.2263
|
91 |
+
2023-10-18 19:26:09,874 saving best model
|
92 |
+
2023-10-18 19:26:09,903 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 19:26:12,157 epoch 2 - iter 147/1476 - loss 0.43364940 - time (sec): 2.25 - samples/sec: 6739.81 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 19:26:14,566 epoch 2 - iter 294/1476 - loss 0.44810793 - time (sec): 4.66 - samples/sec: 7098.25 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-18 19:26:16,919 epoch 2 - iter 441/1476 - loss 0.45228143 - time (sec): 7.02 - samples/sec: 7106.62 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 19:26:19,206 epoch 2 - iter 588/1476 - loss 0.44605435 - time (sec): 9.30 - samples/sec: 7022.19 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-18 19:26:21,537 epoch 2 - iter 735/1476 - loss 0.44203136 - time (sec): 11.63 - samples/sec: 6960.52 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 19:26:23,893 epoch 2 - iter 882/1476 - loss 0.42953157 - time (sec): 13.99 - samples/sec: 6888.04 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-18 19:26:26,221 epoch 2 - iter 1029/1476 - loss 0.42536159 - time (sec): 16.32 - samples/sec: 6913.01 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 19:26:28,640 epoch 2 - iter 1176/1476 - loss 0.41686008 - time (sec): 18.74 - samples/sec: 6973.24 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-18 19:26:31,053 epoch 2 - iter 1323/1476 - loss 0.40319699 - time (sec): 21.15 - samples/sec: 7020.40 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 19:26:33,422 epoch 2 - iter 1470/1476 - loss 0.39495645 - time (sec): 23.52 - samples/sec: 7055.20 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-18 19:26:33,504 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 19:26:33,504 EPOCH 2 done: loss 0.3944 - lr: 0.000044
|
105 |
+
2023-10-18 19:26:40,653 DEV : loss 0.27972713112831116 - f1-score (micro avg) 0.4533
|
106 |
+
2023-10-18 19:26:40,679 saving best model
|
107 |
+
2023-10-18 19:26:40,712 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 19:26:42,802 epoch 3 - iter 147/1476 - loss 0.31787561 - time (sec): 2.09 - samples/sec: 7349.79 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-18 19:26:44,882 epoch 3 - iter 294/1476 - loss 0.31847873 - time (sec): 4.17 - samples/sec: 7727.01 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 19:26:46,953 epoch 3 - iter 441/1476 - loss 0.32050732 - time (sec): 6.24 - samples/sec: 7800.13 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-18 19:26:49,069 epoch 3 - iter 588/1476 - loss 0.33945722 - time (sec): 8.36 - samples/sec: 7971.13 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 19:26:51,403 epoch 3 - iter 735/1476 - loss 0.33243206 - time (sec): 10.69 - samples/sec: 7886.43 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-18 19:26:53,795 epoch 3 - iter 882/1476 - loss 0.33011776 - time (sec): 13.08 - samples/sec: 7712.96 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 19:26:56,101 epoch 3 - iter 1029/1476 - loss 0.32825472 - time (sec): 15.39 - samples/sec: 7623.57 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-18 19:26:58,429 epoch 3 - iter 1176/1476 - loss 0.32855013 - time (sec): 17.72 - samples/sec: 7510.53 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 19:27:00,729 epoch 3 - iter 1323/1476 - loss 0.32623173 - time (sec): 20.02 - samples/sec: 7447.76 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 19:27:03,055 epoch 3 - iter 1470/1476 - loss 0.32429762 - time (sec): 22.34 - samples/sec: 7420.44 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-18 19:27:03,150 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 19:27:03,150 EPOCH 3 done: loss 0.3243 - lr: 0.000039
|
120 |
+
2023-10-18 19:27:10,343 DEV : loss 0.2565878927707672 - f1-score (micro avg) 0.484
|
121 |
+
2023-10-18 19:27:10,369 saving best model
|
122 |
+
2023-10-18 19:27:10,401 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 19:27:12,751 epoch 4 - iter 147/1476 - loss 0.31044806 - time (sec): 2.35 - samples/sec: 7943.66 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 19:27:15,078 epoch 4 - iter 294/1476 - loss 0.30521810 - time (sec): 4.68 - samples/sec: 7449.04 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-18 19:27:17,467 epoch 4 - iter 441/1476 - loss 0.30286129 - time (sec): 7.06 - samples/sec: 7165.86 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 19:27:19,860 epoch 4 - iter 588/1476 - loss 0.29258445 - time (sec): 9.46 - samples/sec: 7050.26 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-18 19:27:22,211 epoch 4 - iter 735/1476 - loss 0.29065507 - time (sec): 11.81 - samples/sec: 7004.00 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 19:27:24,484 epoch 4 - iter 882/1476 - loss 0.28962621 - time (sec): 14.08 - samples/sec: 6895.49 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-18 19:27:26,848 epoch 4 - iter 1029/1476 - loss 0.28847591 - time (sec): 16.45 - samples/sec: 7154.21 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 19:27:29,219 epoch 4 - iter 1176/1476 - loss 0.28570559 - time (sec): 18.82 - samples/sec: 7139.19 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 19:27:31,547 epoch 4 - iter 1323/1476 - loss 0.28152220 - time (sec): 21.14 - samples/sec: 7085.25 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-18 19:27:33,865 epoch 4 - iter 1470/1476 - loss 0.28053742 - time (sec): 23.46 - samples/sec: 7069.46 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-18 19:27:33,955 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 19:27:33,955 EPOCH 4 done: loss 0.2808 - lr: 0.000033
|
135 |
+
2023-10-18 19:27:41,133 DEV : loss 0.25001299381256104 - f1-score (micro avg) 0.5105
|
136 |
+
2023-10-18 19:27:41,160 saving best model
|
137 |
+
2023-10-18 19:27:41,194 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 19:27:43,589 epoch 5 - iter 147/1476 - loss 0.24307097 - time (sec): 2.39 - samples/sec: 6941.11 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-18 19:27:45,981 epoch 5 - iter 294/1476 - loss 0.25891254 - time (sec): 4.79 - samples/sec: 7440.31 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 19:27:48,219 epoch 5 - iter 441/1476 - loss 0.26161265 - time (sec): 7.02 - samples/sec: 7284.10 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-18 19:27:50,608 epoch 5 - iter 588/1476 - loss 0.26397432 - time (sec): 9.41 - samples/sec: 7301.00 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 19:27:52,845 epoch 5 - iter 735/1476 - loss 0.26076338 - time (sec): 11.65 - samples/sec: 7331.47 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-18 19:27:55,258 epoch 5 - iter 882/1476 - loss 0.25857998 - time (sec): 14.06 - samples/sec: 7336.21 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 19:27:57,642 epoch 5 - iter 1029/1476 - loss 0.25772969 - time (sec): 16.45 - samples/sec: 7238.18 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 19:27:59,941 epoch 5 - iter 1176/1476 - loss 0.25641948 - time (sec): 18.75 - samples/sec: 7173.24 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-18 19:28:02,276 epoch 5 - iter 1323/1476 - loss 0.25486743 - time (sec): 21.08 - samples/sec: 7169.23 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 19:28:04,600 epoch 5 - iter 1470/1476 - loss 0.25455365 - time (sec): 23.41 - samples/sec: 7086.76 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-18 19:28:04,696 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 19:28:04,696 EPOCH 5 done: loss 0.2542 - lr: 0.000028
|
150 |
+
2023-10-18 19:28:11,973 DEV : loss 0.23268112540245056 - f1-score (micro avg) 0.5359
|
151 |
+
2023-10-18 19:28:11,999 saving best model
|
152 |
+
2023-10-18 19:28:12,037 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 19:28:14,319 epoch 6 - iter 147/1476 - loss 0.22702365 - time (sec): 2.28 - samples/sec: 6646.41 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 19:28:16,657 epoch 6 - iter 294/1476 - loss 0.22872241 - time (sec): 4.62 - samples/sec: 6983.40 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-18 19:28:19,038 epoch 6 - iter 441/1476 - loss 0.23060571 - time (sec): 7.00 - samples/sec: 7102.09 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 19:28:21,408 epoch 6 - iter 588/1476 - loss 0.22128491 - time (sec): 9.37 - samples/sec: 7211.04 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-18 19:28:23,834 epoch 6 - iter 735/1476 - loss 0.23096293 - time (sec): 11.80 - samples/sec: 7258.92 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 19:28:26,140 epoch 6 - iter 882/1476 - loss 0.23662672 - time (sec): 14.10 - samples/sec: 7219.87 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 19:28:28,585 epoch 6 - iter 1029/1476 - loss 0.23652904 - time (sec): 16.55 - samples/sec: 7056.48 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-18 19:28:30,842 epoch 6 - iter 1176/1476 - loss 0.23746363 - time (sec): 18.80 - samples/sec: 7043.73 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 19:28:33,211 epoch 6 - iter 1323/1476 - loss 0.23598701 - time (sec): 21.17 - samples/sec: 7095.16 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-18 19:28:35,508 epoch 6 - iter 1470/1476 - loss 0.23285328 - time (sec): 23.47 - samples/sec: 7060.49 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-18 19:28:35,599 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 19:28:35,600 EPOCH 6 done: loss 0.2325 - lr: 0.000022
|
165 |
+
2023-10-18 19:28:42,848 DEV : loss 0.23657557368278503 - f1-score (micro avg) 0.5489
|
166 |
+
2023-10-18 19:28:42,874 saving best model
|
167 |
+
2023-10-18 19:28:42,913 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-18 19:28:45,188 epoch 7 - iter 147/1476 - loss 0.20843898 - time (sec): 2.28 - samples/sec: 6965.88 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-18 19:28:47,506 epoch 7 - iter 294/1476 - loss 0.19848750 - time (sec): 4.59 - samples/sec: 6917.41 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-18 19:28:49,793 epoch 7 - iter 441/1476 - loss 0.20213122 - time (sec): 6.88 - samples/sec: 6857.08 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-18 19:28:52,149 epoch 7 - iter 588/1476 - loss 0.20460332 - time (sec): 9.24 - samples/sec: 6881.99 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-18 19:28:54,545 epoch 7 - iter 735/1476 - loss 0.20278281 - time (sec): 11.63 - samples/sec: 6900.60 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-18 19:28:56,668 epoch 7 - iter 882/1476 - loss 0.20307092 - time (sec): 13.75 - samples/sec: 6982.65 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-18 19:28:58,943 epoch 7 - iter 1029/1476 - loss 0.20304549 - time (sec): 16.03 - samples/sec: 7078.70 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-18 19:29:01,285 epoch 7 - iter 1176/1476 - loss 0.21048904 - time (sec): 18.37 - samples/sec: 7076.45 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-18 19:29:03,662 epoch 7 - iter 1323/1476 - loss 0.21393619 - time (sec): 20.75 - samples/sec: 7103.87 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-18 19:29:06,067 epoch 7 - iter 1470/1476 - loss 0.21913870 - time (sec): 23.15 - samples/sec: 7163.04 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-18 19:29:06,157 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 19:29:06,157 EPOCH 7 done: loss 0.2189 - lr: 0.000017
|
180 |
+
2023-10-18 19:29:13,450 DEV : loss 0.23048946261405945 - f1-score (micro avg) 0.5607
|
181 |
+
2023-10-18 19:29:13,476 saving best model
|
182 |
+
2023-10-18 19:29:13,514 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-18 19:29:15,943 epoch 8 - iter 147/1476 - loss 0.22164479 - time (sec): 2.43 - samples/sec: 7841.51 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-18 19:29:18,259 epoch 8 - iter 294/1476 - loss 0.21612436 - time (sec): 4.74 - samples/sec: 7213.85 - lr: 0.000016 - momentum: 0.000000
|
185 |
+
2023-10-18 19:29:20,610 epoch 8 - iter 441/1476 - loss 0.20551481 - time (sec): 7.10 - samples/sec: 7205.49 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-18 19:29:22,942 epoch 8 - iter 588/1476 - loss 0.20444008 - time (sec): 9.43 - samples/sec: 7104.72 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-18 19:29:25,290 epoch 8 - iter 735/1476 - loss 0.20490690 - time (sec): 11.78 - samples/sec: 7023.69 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-18 19:29:27,633 epoch 8 - iter 882/1476 - loss 0.20394011 - time (sec): 14.12 - samples/sec: 6971.94 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-18 19:29:29,954 epoch 8 - iter 1029/1476 - loss 0.20450972 - time (sec): 16.44 - samples/sec: 6981.55 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-18 19:29:32,268 epoch 8 - iter 1176/1476 - loss 0.20532453 - time (sec): 18.75 - samples/sec: 6988.05 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-18 19:29:34,611 epoch 8 - iter 1323/1476 - loss 0.20424926 - time (sec): 21.10 - samples/sec: 7020.74 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-18 19:29:37,049 epoch 8 - iter 1470/1476 - loss 0.20419251 - time (sec): 23.53 - samples/sec: 7048.45 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-18 19:29:37,132 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 19:29:37,132 EPOCH 8 done: loss 0.2038 - lr: 0.000011
|
195 |
+
2023-10-18 19:29:44,526 DEV : loss 0.2287674993276596 - f1-score (micro avg) 0.564
|
196 |
+
2023-10-18 19:29:44,553 saving best model
|
197 |
+
2023-10-18 19:29:44,588 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-18 19:29:46,979 epoch 9 - iter 147/1476 - loss 0.24117374 - time (sec): 2.39 - samples/sec: 7758.64 - lr: 0.000011 - momentum: 0.000000
|
199 |
+
2023-10-18 19:29:49,330 epoch 9 - iter 294/1476 - loss 0.20776964 - time (sec): 4.74 - samples/sec: 7452.71 - lr: 0.000010 - momentum: 0.000000
|
200 |
+
2023-10-18 19:29:51,767 epoch 9 - iter 441/1476 - loss 0.19920249 - time (sec): 7.18 - samples/sec: 7490.06 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-18 19:29:54,131 epoch 9 - iter 588/1476 - loss 0.19959637 - time (sec): 9.54 - samples/sec: 7400.95 - lr: 0.000009 - momentum: 0.000000
|
202 |
+
2023-10-18 19:29:56,441 epoch 9 - iter 735/1476 - loss 0.20235990 - time (sec): 11.85 - samples/sec: 7218.41 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-18 19:29:58,781 epoch 9 - iter 882/1476 - loss 0.20008424 - time (sec): 14.19 - samples/sec: 7133.15 - lr: 0.000008 - momentum: 0.000000
|
204 |
+
2023-10-18 19:30:01,113 epoch 9 - iter 1029/1476 - loss 0.19992171 - time (sec): 16.52 - samples/sec: 7066.75 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-18 19:30:03,499 epoch 9 - iter 1176/1476 - loss 0.20005741 - time (sec): 18.91 - samples/sec: 7012.25 - lr: 0.000007 - momentum: 0.000000
|
206 |
+
2023-10-18 19:30:05,824 epoch 9 - iter 1323/1476 - loss 0.19939868 - time (sec): 21.24 - samples/sec: 6998.13 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-18 19:30:08,170 epoch 9 - iter 1470/1476 - loss 0.19779017 - time (sec): 23.58 - samples/sec: 7031.87 - lr: 0.000006 - momentum: 0.000000
|
208 |
+
2023-10-18 19:30:08,259 ----------------------------------------------------------------------------------------------------
|
209 |
+
2023-10-18 19:30:08,259 EPOCH 9 done: loss 0.1978 - lr: 0.000006
|
210 |
+
2023-10-18 19:30:15,511 DEV : loss 0.23322512209415436 - f1-score (micro avg) 0.5669
|
211 |
+
2023-10-18 19:30:15,537 saving best model
|
212 |
+
2023-10-18 19:30:15,575 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-18 19:30:17,903 epoch 10 - iter 147/1476 - loss 0.17627206 - time (sec): 2.33 - samples/sec: 6928.85 - lr: 0.000005 - momentum: 0.000000
|
214 |
+
2023-10-18 19:30:20,279 epoch 10 - iter 294/1476 - loss 0.19028562 - time (sec): 4.70 - samples/sec: 6917.02 - lr: 0.000004 - momentum: 0.000000
|
215 |
+
2023-10-18 19:30:22,714 epoch 10 - iter 441/1476 - loss 0.20663725 - time (sec): 7.14 - samples/sec: 7221.33 - lr: 0.000004 - momentum: 0.000000
|
216 |
+
2023-10-18 19:30:25,056 epoch 10 - iter 588/1476 - loss 0.20586196 - time (sec): 9.48 - samples/sec: 7218.37 - lr: 0.000003 - momentum: 0.000000
|
217 |
+
2023-10-18 19:30:27,349 epoch 10 - iter 735/1476 - loss 0.19710005 - time (sec): 11.77 - samples/sec: 7161.12 - lr: 0.000003 - momentum: 0.000000
|
218 |
+
2023-10-18 19:30:29,703 epoch 10 - iter 882/1476 - loss 0.19316847 - time (sec): 14.13 - samples/sec: 7033.32 - lr: 0.000002 - momentum: 0.000000
|
219 |
+
2023-10-18 19:30:32,069 epoch 10 - iter 1029/1476 - loss 0.19035206 - time (sec): 16.49 - samples/sec: 7108.95 - lr: 0.000002 - momentum: 0.000000
|
220 |
+
2023-10-18 19:30:34,472 epoch 10 - iter 1176/1476 - loss 0.19179760 - time (sec): 18.90 - samples/sec: 7073.46 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-18 19:30:36,816 epoch 10 - iter 1323/1476 - loss 0.19167956 - time (sec): 21.24 - samples/sec: 7103.06 - lr: 0.000001 - momentum: 0.000000
|
222 |
+
2023-10-18 19:30:39,093 epoch 10 - iter 1470/1476 - loss 0.19294142 - time (sec): 23.52 - samples/sec: 7051.22 - lr: 0.000000 - momentum: 0.000000
|
223 |
+
2023-10-18 19:30:39,180 ----------------------------------------------------------------------------------------------------
|
224 |
+
2023-10-18 19:30:39,180 EPOCH 10 done: loss 0.1932 - lr: 0.000000
|
225 |
+
2023-10-18 19:30:46,482 DEV : loss 0.23437848687171936 - f1-score (micro avg) 0.5667
|
226 |
+
2023-10-18 19:30:46,542 ----------------------------------------------------------------------------------------------------
|
227 |
+
2023-10-18 19:30:46,542 Loading model from best epoch ...
|
228 |
+
2023-10-18 19:30:46,624 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
229 |
+
2023-10-18 19:30:49,805
|
230 |
+
Results:
|
231 |
+
- F-score (micro) 0.5554
|
232 |
+
- F-score (macro) 0.3405
|
233 |
+
- Accuracy 0.4067
|
234 |
+
|
235 |
+
By class:
|
236 |
+
precision recall f1-score support
|
237 |
+
|
238 |
+
loc 0.5913 0.7622 0.6660 858
|
239 |
+
pers 0.4338 0.5493 0.4848 537
|
240 |
+
org 0.2063 0.0985 0.1333 132
|
241 |
+
time 0.4107 0.4259 0.4182 54
|
242 |
+
prod 0.0000 0.0000 0.0000 61
|
243 |
+
|
244 |
+
micro avg 0.5171 0.5999 0.5554 1642
|
245 |
+
macro avg 0.3284 0.3672 0.3405 1642
|
246 |
+
weighted avg 0.4810 0.5999 0.5310 1642
|
247 |
+
|
248 |
+
2023-10-18 19:30:49,805 ----------------------------------------------------------------------------------------------------
|