readme: add initial version
Browse files
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- de
|
6 |
+
- fr
|
7 |
+
- fi
|
8 |
+
- sv
|
9 |
+
- nl
|
10 |
+
---
|
11 |
+
|
12 |
+
# hmByT5 - Preliminary Language Models
|
13 |
+
|
14 |
+
Preliminary Historic Multilingual and Monolingual ByT5 Models. Following languages are currently covered:
|
15 |
+
|
16 |
+
* English (British Library Corpus - Books)
|
17 |
+
* German (Europeana Newspaper)
|
18 |
+
* French (Europeana Newspaper)
|
19 |
+
* Finnish (Europeana Newspaper)
|
20 |
+
* Swedish (Europeana Newspaper)
|
21 |
+
* Dutch (Delpher Corpus)
|
22 |
+
|
23 |
+
More details can be found in [our GitHub repository](https://github.com/stefan-it/hmByT5).
|
24 |
+
|
25 |
+
In this experiment we sample 4B bytes (~4GB of text) from each corpora (and upsample Swedish and Finnish).
|
26 |
+
|
27 |
+
# Pretraining
|
28 |
+
|
29 |
+
We use the official JAX/FLAX example in Hugging Face Transformers to pretrain a ByT5 model on a single v3-8 TPU.
|
30 |
+
Details about the training can be found [here](https://github.com/stefan-it/hmByT5/tree/main/hmbyt5-flax).
|
31 |
+
|
32 |
+
# Evaluation on Downstream Tasks (NER)
|
33 |
+
|
34 |
+
We evaluated the hmByT5 model on downstream tasks:
|
35 |
+
|
36 |
+
| Model | English AjMC | German AjMC | French AjMC | Finnish NewsEye | Swedish NewsEye | Dutch ICDAR | French ICDAR | Avg. |
|
37 |
+
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------|-----------------|--------------|--------------|------|
|
38 |
+
| [`hmbyt5-preliminary/byt5-small-multilingual-4g`](https://huggingface.co/hmbyt5-preliminary/byt5-small-multilingual-4g) | 83.49 ± 0.96 | 87.65 ± 0.63 | 84.16 ± 0.90 | | | | | |
|
39 |
+
|
40 |
+
# Acknowledgements
|
41 |
+
|
42 |
+
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
|
43 |
+
Many Thanks for providing access to the TPUs ❤️
|