--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - hojzas/proj4-label metrics: - accuracy widget: - text: " perms = all_permutations_substrings(string)\n \nreturn perms.intersection(words)" - text: ' perms = all_permutations_substrings(string) return {i for i in words if i in perms}' - text: ' perms = all_permutations_substrings(string) return {word for word in words if hash(word) in {hash(looking) for looking in perms}}' - text: ' perms = all_permutations_substrings(string) res = [x for x in list(perms) + words if x in list(perms) and x in words] return set(res)' - text: " perms = all_permutations_substrings(string)\n \nif set(words) & set(perms):\n\ \ res = (set(words) & set(perms))" pipeline_tag: text-classification inference: true co2_eq_emissions: emissions: 0.30176603615895614 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz ram_total_size: 251.49160385131836 hours_used: 0.006 base_model: sentence-transformers/all-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/all-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: hojzas/proj4-label type: hojzas/proj4-label split: test metrics: - type: accuracy value: 0.9375 name: Accuracy --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [hojzas/proj4-label](https://huggingface.co/datasets/hojzas/proj4-label) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 |