hongpingjun98 commited on
Commit
c93ccee
·
1 Parent(s): 4e1972e

Model save

Browse files
Files changed (2) hide show
  1. README.md +60 -12
  2. model.safetensors +1 -1
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.71
29
  - name: Precision
30
  type: precision
31
- value: 0.7228353140916808
32
  - name: Recall
33
  type: recall
34
- value: 0.71
35
  - name: F1
36
  type: f1
37
- value: 0.705762987012987
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.6038
48
- - Accuracy: 0.71
49
- - Precision: 0.7228
50
- - Recall: 0.71
51
- - F1: 0.7058
52
 
53
  ## Model description
54
 
@@ -74,15 +74,63 @@ The following hyperparameters were used during training:
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_steps: 500
77
- - num_epochs: 2
78
  - mixed_precision_training: Native AMP
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
- | 0.6794 | 1.0 | 107 | 0.6548 | 0.595 | 0.5978 | 0.595 | 0.5921 |
85
- | 0.6734 | 2.0 | 214 | 0.6038 | 0.71 | 0.7228 | 0.71 | 0.7058 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
 
88
  ### Framework versions
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.76
29
  - name: Precision
30
  type: precision
31
+ value: 0.7601040416166467
32
  - name: Recall
33
  type: recall
34
+ value: 0.76
35
  - name: F1
36
  type: f1
37
+ value: 0.75997599759976
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 2.1827
48
+ - Accuracy: 0.76
49
+ - Precision: 0.7601
50
+ - Recall: 0.76
51
+ - F1: 0.7600
52
 
53
  ## Model description
54
 
 
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_steps: 500
77
+ - num_epochs: 50
78
  - mixed_precision_training: Native AMP
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 0.6925 | 1.0 | 107 | 0.6665 | 0.6 | 0.6457 | 0.6 | 0.5660 |
85
+ | 0.6729 | 2.0 | 214 | 0.6025 | 0.69 | 0.6964 | 0.69 | 0.6875 |
86
+ | 0.6857 | 3.0 | 321 | 0.6071 | 0.665 | 0.7531 | 0.665 | 0.6331 |
87
+ | 0.6667 | 4.0 | 428 | 0.5650 | 0.695 | 0.7157 | 0.6950 | 0.6875 |
88
+ | 0.6168 | 5.0 | 535 | 0.5036 | 0.75 | 0.7504 | 0.75 | 0.7499 |
89
+ | 0.5165 | 6.0 | 642 | 0.6248 | 0.67 | 0.6701 | 0.67 | 0.6700 |
90
+ | 0.4087 | 7.0 | 749 | 0.5246 | 0.735 | 0.7379 | 0.7350 | 0.7342 |
91
+ | 0.3083 | 8.0 | 856 | 0.6130 | 0.7 | 0.7 | 0.7 | 0.7 |
92
+ | 0.2909 | 9.0 | 963 | 0.7584 | 0.735 | 0.7723 | 0.7350 | 0.7256 |
93
+ | 0.319 | 10.0 | 1070 | 0.7350 | 0.72 | 0.7360 | 0.72 | 0.7152 |
94
+ | 0.1812 | 11.0 | 1177 | 0.9320 | 0.715 | 0.7176 | 0.7150 | 0.7141 |
95
+ | 0.2824 | 12.0 | 1284 | 0.9723 | 0.705 | 0.7336 | 0.7050 | 0.6957 |
96
+ | 0.2662 | 13.0 | 1391 | 0.8676 | 0.72 | 0.7222 | 0.72 | 0.7193 |
97
+ | 0.1641 | 14.0 | 1498 | 0.9450 | 0.71 | 0.7103 | 0.71 | 0.7099 |
98
+ | 0.2264 | 15.0 | 1605 | 1.1613 | 0.675 | 0.6764 | 0.675 | 0.6743 |
99
+ | 0.2077 | 16.0 | 1712 | 1.3497 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
100
+ | 0.1767 | 17.0 | 1819 | 1.4154 | 0.705 | 0.7075 | 0.7050 | 0.7041 |
101
+ | 0.1751 | 18.0 | 1926 | 1.2369 | 0.735 | 0.7350 | 0.735 | 0.7350 |
102
+ | 0.1195 | 19.0 | 2033 | 1.1152 | 0.72 | 0.7334 | 0.72 | 0.7159 |
103
+ | 0.0507 | 20.0 | 2140 | 1.4853 | 0.715 | 0.7152 | 0.715 | 0.7149 |
104
+ | 0.0544 | 21.0 | 2247 | 1.7174 | 0.725 | 0.7302 | 0.7250 | 0.7234 |
105
+ | 0.0648 | 22.0 | 2354 | 1.7327 | 0.71 | 0.7121 | 0.71 | 0.7093 |
106
+ | 0.0039 | 23.0 | 2461 | 1.8211 | 0.725 | 0.7268 | 0.7250 | 0.7244 |
107
+ | 0.0153 | 24.0 | 2568 | 1.8315 | 0.715 | 0.7176 | 0.7150 | 0.7141 |
108
+ | 0.0017 | 25.0 | 2675 | 1.7446 | 0.72 | 0.7232 | 0.72 | 0.7190 |
109
+ | 0.0188 | 26.0 | 2782 | 1.6413 | 0.72 | 0.7274 | 0.72 | 0.7177 |
110
+ | 0.0168 | 27.0 | 2889 | 1.8013 | 0.73 | 0.7315 | 0.73 | 0.7296 |
111
+ | 0.0355 | 28.0 | 2996 | 2.0405 | 0.725 | 0.7354 | 0.725 | 0.7219 |
112
+ | 0.0168 | 29.0 | 3103 | 1.5087 | 0.735 | 0.7350 | 0.735 | 0.7350 |
113
+ | 0.0409 | 30.0 | 3210 | 1.5272 | 0.72 | 0.7244 | 0.72 | 0.7186 |
114
+ | 0.004 | 31.0 | 3317 | 1.9978 | 0.715 | 0.7214 | 0.7150 | 0.7129 |
115
+ | 0.0002 | 32.0 | 3424 | 1.9760 | 0.72 | 0.7244 | 0.72 | 0.7186 |
116
+ | 0.0111 | 33.0 | 3531 | 1.9985 | 0.74 | 0.7409 | 0.74 | 0.7398 |
117
+ | 0.052 | 34.0 | 3638 | 1.9607 | 0.73 | 0.7334 | 0.73 | 0.7290 |
118
+ | 0.0263 | 35.0 | 3745 | 1.7118 | 0.75 | 0.7525 | 0.75 | 0.7494 |
119
+ | 0.0101 | 36.0 | 3852 | 1.9553 | 0.755 | 0.7571 | 0.755 | 0.7545 |
120
+ | 0.0001 | 37.0 | 3959 | 2.0064 | 0.75 | 0.7537 | 0.75 | 0.7491 |
121
+ | 0.0186 | 38.0 | 4066 | 2.1726 | 0.74 | 0.7404 | 0.74 | 0.7399 |
122
+ | 0.0046 | 39.0 | 4173 | 2.1083 | 0.755 | 0.7550 | 0.755 | 0.7550 |
123
+ | 0.0042 | 40.0 | 4280 | 1.9944 | 0.76 | 0.7609 | 0.76 | 0.7598 |
124
+ | 0.0178 | 41.0 | 4387 | 2.0096 | 0.76 | 0.7604 | 0.76 | 0.7599 |
125
+ | 0.0089 | 42.0 | 4494 | 2.0431 | 0.765 | 0.7652 | 0.765 | 0.7649 |
126
+ | 0.0095 | 43.0 | 4601 | 2.0662 | 0.76 | 0.7604 | 0.76 | 0.7599 |
127
+ | 0.0162 | 44.0 | 4708 | 2.1703 | 0.745 | 0.7450 | 0.745 | 0.7450 |
128
+ | 0.0001 | 45.0 | 4815 | 2.1525 | 0.76 | 0.7601 | 0.76 | 0.7600 |
129
+ | 0.0001 | 46.0 | 4922 | 2.1581 | 0.76 | 0.7601 | 0.76 | 0.7600 |
130
+ | 0.0086 | 47.0 | 5029 | 2.1665 | 0.76 | 0.7601 | 0.76 | 0.7600 |
131
+ | 0.0088 | 48.0 | 5136 | 2.1747 | 0.76 | 0.7601 | 0.76 | 0.7600 |
132
+ | 0.0044 | 49.0 | 5243 | 2.1812 | 0.76 | 0.7601 | 0.76 | 0.7600 |
133
+ | 0.0043 | 50.0 | 5350 | 2.1827 | 0.76 | 0.7601 | 0.76 | 0.7600 |
134
 
135
 
136
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8709ff0ec1849823cbce1975239eec9e00c2c5c45530c65dcc1c579ecc3acb1b
3
  size 737719272
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0635a6d8bf2a717d42c5d9118e8d0670522f2be1617541ef4cf1007481610a6f
3
  size 737719272