Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- .ipynb_checkpoints/README-checkpoint.md +57 -0
- README.md +54 -0
- config.json +28 -0
- model_optimized.onnx +3 -0
- model_optimized.onnx.data +3 -0
- ort_config.json +39 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model_optimized.onnx.data filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: feature-extraction
|
4 |
+
---
|
5 |
+
|
6 |
+
# bge-m3-onnx-o4
|
7 |
+
|
8 |
+
This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3). Why is this model cool?
|
9 |
+
|
10 |
+
- [x] Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
11 |
+
- [x] Multi-Linguality: It can support more than **100** working languages.
|
12 |
+
- [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens.
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
### Dense Retrieval
|
17 |
+
|
18 |
+
```
|
19 |
+
# for cuda
|
20 |
+
pip install --upgrade-strategy eager optimum[onnxruntime]
|
21 |
+
```
|
22 |
+
|
23 |
+
```python
|
24 |
+
|
25 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
26 |
+
from transformers import AutoTokenizer
|
27 |
+
import torch
|
28 |
+
|
29 |
+
model = ORTModelForFeatureExtraction.from_pretrained("hooman650/bge-m3-onnx-o4", provider="CUDAExecutionProvider")
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")
|
31 |
+
|
32 |
+
sentences = [
|
33 |
+
"English: The quick brown fox jumps over the lazy dog.",
|
34 |
+
"Spanish: El rápido zorro marrón salta sobre el perro perezoso.",
|
35 |
+
"French: Le renard brun rapide saute par-dessus le chien paresseux.",
|
36 |
+
"German: Der schnelle braune Fuchs springt über den faulen Hund.",
|
37 |
+
"Italian: La volpe marrone veloce salta sopra il cane pigro.",
|
38 |
+
"Japanese: 速い茶色の狐が怠惰な犬を飛び越える。",
|
39 |
+
"Chinese (Simplified): 快速的棕色狐狸跳过懒狗。",
|
40 |
+
"Russian: Быстрая коричневая лиса прыгает через ленивую собаку.",
|
41 |
+
"Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.",
|
42 |
+
"Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।"
|
43 |
+
]
|
44 |
+
|
45 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda")
|
46 |
+
|
47 |
+
# Get the embeddings
|
48 |
+
out=model(**encoded_input,return_dict=True).last_hidden_state
|
49 |
+
|
50 |
+
# normalize the embeddings
|
51 |
+
dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1)
|
52 |
+
```
|
53 |
+
### Multi-Vector (ColBERT)
|
54 |
+
|
55 |
+
`coming soon...`
|
56 |
+
|
57 |
+
|
README.md
CHANGED
@@ -1,3 +1,57 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
pipeline_tag: feature-extraction
|
4 |
---
|
5 |
+
|
6 |
+
# bge-m3-onnx-o4
|
7 |
+
|
8 |
+
This is `bge-m3-onnx-o4` weights of the original [`BAAI/bge-m3`](https://huggingface.co/BAAI/bge-m3). Why is this model cool?
|
9 |
+
|
10 |
+
- [x] Multi-Functionality: It can simultaneously perform the three common retrieval functionalities of embedding model: dense retrieval, multi-vector retrieval, and sparse retrieval.
|
11 |
+
- [x] Multi-Linguality: It can support more than **100** working languages.
|
12 |
+
- [x] Multi-Granularity: It is able to process inputs of different granularities, spanning from short sentences to long documents of up to **8192** tokens.
|
13 |
+
|
14 |
+
## Usage
|
15 |
+
|
16 |
+
### Dense Retrieval
|
17 |
+
|
18 |
+
```
|
19 |
+
# for cuda
|
20 |
+
pip install --upgrade-strategy eager optimum[onnxruntime]
|
21 |
+
```
|
22 |
+
|
23 |
+
```python
|
24 |
+
|
25 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
26 |
+
from transformers import AutoTokenizer
|
27 |
+
import torch
|
28 |
+
|
29 |
+
model = ORTModelForFeatureExtraction.from_pretrained("hooman650/bge-m3-onnx-o4", provider="CUDAExecutionProvider")
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained("hooman650/bge-m3-onnx-o4")
|
31 |
+
|
32 |
+
sentences = [
|
33 |
+
"English: The quick brown fox jumps over the lazy dog.",
|
34 |
+
"Spanish: El rápido zorro marrón salta sobre el perro perezoso.",
|
35 |
+
"French: Le renard brun rapide saute par-dessus le chien paresseux.",
|
36 |
+
"German: Der schnelle braune Fuchs springt über den faulen Hund.",
|
37 |
+
"Italian: La volpe marrone veloce salta sopra il cane pigro.",
|
38 |
+
"Japanese: 速い茶色の狐が怠惰な犬を飛び越える。",
|
39 |
+
"Chinese (Simplified): 快速的棕色狐狸跳过懒狗。",
|
40 |
+
"Russian: Быстрая коричневая лиса прыгает через ленивую собаку.",
|
41 |
+
"Arabic: الثعلب البني السريع يقفز فوق الكلب الكسول.",
|
42 |
+
"Hindi: तेज़ भूरी लोमड़ी आलसी कुत्ते के ऊपर कूद जाती है।"
|
43 |
+
]
|
44 |
+
|
45 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt').to("cuda")
|
46 |
+
|
47 |
+
# Get the embeddings
|
48 |
+
out=model(**encoded_input,return_dict=True).last_hidden_state
|
49 |
+
|
50 |
+
# normalize the embeddings
|
51 |
+
dense_vecs = torch.nn.functional.normalize(out[:, 0], dim=-1)
|
52 |
+
```
|
53 |
+
### Multi-Vector (ColBERT)
|
54 |
+
|
55 |
+
`coming soon...`
|
56 |
+
|
57 |
+
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "bge-m3-v1/config.json",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.37.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
model_optimized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35af0110ac67f418fb78ebb8f1e138743b156c29d875f081f5e851ef0f92638c
|
3 |
+
size 82707
|
model_optimized.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1b1235afd54571edb3f1152c295c42fb3b7b1bcd8ca233d236b29aef43ea11a
|
3 |
+
size 1133475856
|
ort_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"one_external_file": true,
|
3 |
+
"opset": null,
|
4 |
+
"optimization": {
|
5 |
+
"disable_attention": null,
|
6 |
+
"disable_attention_fusion": false,
|
7 |
+
"disable_bias_gelu": null,
|
8 |
+
"disable_bias_gelu_fusion": false,
|
9 |
+
"disable_bias_skip_layer_norm": null,
|
10 |
+
"disable_bias_skip_layer_norm_fusion": false,
|
11 |
+
"disable_embed_layer_norm": true,
|
12 |
+
"disable_embed_layer_norm_fusion": true,
|
13 |
+
"disable_gelu": null,
|
14 |
+
"disable_gelu_fusion": false,
|
15 |
+
"disable_group_norm_fusion": true,
|
16 |
+
"disable_layer_norm": null,
|
17 |
+
"disable_layer_norm_fusion": false,
|
18 |
+
"disable_packed_kv": true,
|
19 |
+
"disable_rotary_embeddings": false,
|
20 |
+
"disable_shape_inference": false,
|
21 |
+
"disable_skip_layer_norm": null,
|
22 |
+
"disable_skip_layer_norm_fusion": false,
|
23 |
+
"enable_gelu_approximation": true,
|
24 |
+
"enable_gemm_fast_gelu_fusion": false,
|
25 |
+
"enable_transformers_specific_optimizations": true,
|
26 |
+
"fp16": true,
|
27 |
+
"no_attention_mask": false,
|
28 |
+
"optimization_level": 2,
|
29 |
+
"optimize_for_gpu": true,
|
30 |
+
"optimize_with_onnxruntime_only": null,
|
31 |
+
"use_mask_index": false,
|
32 |
+
"use_multi_head_attention": false,
|
33 |
+
"use_raw_attention_mask": false
|
34 |
+
},
|
35 |
+
"optimum_version": "1.16.2",
|
36 |
+
"quantization": {},
|
37 |
+
"transformers_version": "4.37.2",
|
38 |
+
"use_external_data_format": true
|
39 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6710678b12670bc442b99edc952c4d996ae309a7020c1fa0096dd245c2faf790
|
3 |
+
size 17082821
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|