--- language: - ja base_model: cl-nagoya/ruri-pt-base tags: - sentence-similarity - feature-extraction license: apache-2.0 datasets: - cl-nagoya/ruri-dataset-ft pipeline_tag: sentence-similarity --- このモデルは、[text-embeddings-inference ](https://github.com/huggingface/text-embeddings-inference) (TEI) で、mecab / unidic などを用いた日本語Tokenizerのモデルを、dummy の tokenizer.json を用いて**無理やり動かす** 方法のサンプルです。 dummy の tokenizer.json を用意することで、とりあえず TEI を起動させ、推論時には手元のPython環境で tokenizer した token_ids を送ります。 詳しくは、[text-embeddings-inference で日本語トークナイザーモデルの推論をする](https://secon.dev/entry/2024/09/30/160000/)を参照ください。 --- 大元のモデルは [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) です。以下のモデルカードは、大元の ruri-base の物です。 --- # Ruri: Japanese General Text Embeddings ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers fugashi sentencepiece unidic-lite ``` Then you can load this model and run inference. ```python import torch.nn.functional as F from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("cl-nagoya/ruri-base") # Don't forget to add the prefix "クエリ: " for query-side or "文章: " for passage-side texts. sentences = [ "クエリ: 瑠璃色はどんな色?", "文章: 瑠璃色(るりいろ)は、紫みを帯びた濃い青。名は、半貴石の瑠璃(ラピスラズリ、英: lapis lazuli)による。JIS慣用色名では「こい紫みの青」(略号 dp-pB)と定義している[1][2]。", "クエリ: ワシやタカのように、鋭いくちばしと爪を持った大型の鳥類を総称して「何類」というでしょう?", "文章: ワシ、タカ、ハゲワシ、ハヤブサ、コンドル、フクロウが代表的である。これらの猛禽類はリンネ前後の時代(17~18世紀)には鷲類・鷹類・隼類及び梟類に分類された。ちなみにリンネは狩りをする鳥を単一の目(もく)にまとめ、vultur(コンドル、ハゲワシ)、falco(ワシ、タカ、ハヤブサなど)、strix(フクロウ)、lanius(モズ)の4属を含めている。", ] embeddings = model.encode(sentences, convert_to_tensor=True) print(embeddings.size()) # [4, 768] similarities = F.cosine_similarity(embeddings.unsqueeze(0), embeddings.unsqueeze(1), dim=2) print(similarities) # [[1.0000, 0.9421, 0.6844, 0.7167], # [0.9421, 1.0000, 0.6626, 0.6863], # [0.6844, 0.6626, 1.0000, 0.8785], # [0.7167, 0.6863, 0.8785, 1.0000]] ``` ## Benchmarks ### JMTEB Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB). |Model|#Param.|Avg.|Retrieval|STS|Classfification|Reranking|Clustering|PairClassification| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |[cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base)|111M|68.56|49.64|82.05|73.47|91.83|51.79|62.57| |[cl-nagoya/sup-simcse-ja-large](https://huggingface.co/cl-nagoya/sup-simcse-ja-large)|337M|66.51|37.62|83.18|73.73|91.48|50.56|62.51| |[cl-nagoya/unsup-simcse-ja-base](https://huggingface.co/cl-nagoya/unsup-simcse-ja-base)|111M|65.07|40.23|78.72|73.07|91.16|44.77|62.44| |[cl-nagoya/unsup-simcse-ja-large](https://huggingface.co/cl-nagoya/unsup-simcse-ja-large)|337M|66.27|40.53|80.56|74.66|90.95|48.41|62.49| |[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|133M|70.44|59.02|78.71|76.82|91.90|49.78|66.39| |||||||||| |[sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE)|472M|64.70|40.12|76.56|72.66|91.63|44.88|62.33| |[intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)|118M|69.52|67.27|80.07|67.62|93.03|46.91|62.19| |[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|278M|70.12|68.21|79.84|69.30|92.85|48.26|62.26| |[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|560M|71.65|70.98|79.70|72.89|92.96|51.24|62.15| |||||||||| |OpenAI/text-embedding-ada-002|-|69.48|64.38|79.02|69.75|93.04|48.30|62.40| |OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27| |OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35| |||||||||| |[Ruri-Small](https://huggingface.co/cl-nagoya/ruri-small)|68M|71.53|69.41|82.79|76.22|93.00|51.19|62.11| |[**Ruri-Base**](https://huggingface.co/cl-nagoya/ruri-base) (this model)|111M|71.91|69.82|82.87|75.58|92.91|54.16|62.38| |[Ruri-Large](https://huggingface.co/cl-nagoya/ruri-large)|337M|73.31|73.02|83.13|77.43|92.99|51.82|62.29| ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [cl-nagoya/ruri-pt-base](https://huggingface.co/cl-nagoya/ruri-pt-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 - **Similarity Function:** Cosine Similarity - **Language:** Japanese - **License:** Apache 2.0 - **Paper:** https://arxiv.org/abs/2409.07737 ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.1+cu118 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ```bibtex @misc{ Ruri, title={{Ruri: Japanese General Text Embeddings}}, author={Hayato Tsukagoshi and Ryohei Sasano}, year={2024}, eprint={2409.07737}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.07737}, } ``` ## License This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).