---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:101072
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are the special names of Kanyakumari?
sentences:
- What are the other names of Kanniyakumari?
- What happen if we don't buy foreign goods?
- Why does Uber not allow their drivers to see the per-trip ratings received from
clients?
- source_sentence: Why do we continue this American experiment? We hate each other.
Liberals are about to burn the country down at inauguration, why continue?
sentences:
- What would happen if ₹2000 forged?
- Why do Caucasian countries hate each other?
- Why should I select you for this particular job?
- source_sentence: What instrument begins the horn section in the Radiohead song The
National Anthem?
sentences:
- What is 16t^2=75t+10 quadraticly?
- How do I become more open?
- What do Americans think of Kurds?
- source_sentence: What is the average time one needs to prepare for the IAS?
sentences:
- What is the average time for preparation of IAS?
- What is the easiest foreign language for a native English speaker to learn?
- Where do men masturbate usually?
- source_sentence: What was Nikola Tesla's IQ?
sentences:
- Where can I get best qualities outdoor tiles in Sydney?
- What hotel in Raipur would be safe for unmarried couples, without the harassment
of police, hotel staff, and moral police?
- Did Nikola Tesla have children?
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"What was Nikola Tesla's IQ?",
'Did Nikola Tesla have children?',
'What hotel in Raipur would be safe for unmarried couples, without the harassment of police, hotel staff, and moral police?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 101,072 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
How can I improve my pronunciation of English words?
| How can I improve my pronunciation in English?
| 1.0
|
| How can I increase my attractiveness?
| How do I increase my attraction towards someone?
| 0.0
|
| What are the best places to work in?
| Which are the best places to work in india?
| 0.0
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters