howard-hou
commited on
Commit
•
0b9ef29
1
Parent(s):
eb51fc8
Upload RankingPrompter
Browse files- config.json +45 -0
- configuration_rankingprompter.py +84 -0
- model.safetensors +3 -0
- modeling_rankingprompter.py +1723 -0
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/ICAA-compressor",
|
3 |
+
"architectures": [
|
4 |
+
"RankingPrompter"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_rankingprompter.RankingPrompterConfig",
|
8 |
+
"AutoModel": "modeling_rankingprompter.RankingPrompter"
|
9 |
+
},
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_ff": 1024,
|
12 |
+
"d_kv": 64,
|
13 |
+
"d_model": 512,
|
14 |
+
"decoder_start_token_id": 0,
|
15 |
+
"dense_act_fn": "gelu_new",
|
16 |
+
"dropout_rate": 0.1,
|
17 |
+
"eos_token_id": 1,
|
18 |
+
"feed_forward_proj": "gated-gelu",
|
19 |
+
"id2label": {
|
20 |
+
"0": "LABEL_0"
|
21 |
+
},
|
22 |
+
"initializer_factor": 1.0,
|
23 |
+
"is_encoder_decoder": true,
|
24 |
+
"is_gated_act": true,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0
|
27 |
+
},
|
28 |
+
"layer_norm_epsilon": 1e-06,
|
29 |
+
"max_new_tokens": 64,
|
30 |
+
"model_type": "umt5",
|
31 |
+
"num_answer_query": 128,
|
32 |
+
"num_decoder_layers": 8,
|
33 |
+
"num_heads": 6,
|
34 |
+
"num_layers": 8,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"relative_attention_max_distance": 128,
|
37 |
+
"relative_attention_num_buckets": 32,
|
38 |
+
"scalable_attention": true,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"tokenizer_class": "T5Tokenizer",
|
41 |
+
"torch_dtype": "float32",
|
42 |
+
"transformers_version": "4.41.2",
|
43 |
+
"use_cache": true,
|
44 |
+
"vocab_size": 256384
|
45 |
+
}
|
configuration_rankingprompter.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class RankingPrompterConfig(PretrainedConfig):
|
4 |
+
model_type = "umt5"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
vocab_size=250112,
|
9 |
+
d_model=512,
|
10 |
+
d_kv=64,
|
11 |
+
d_ff=1024,
|
12 |
+
num_layers=8,
|
13 |
+
num_decoder_layers=None,
|
14 |
+
num_heads=6,
|
15 |
+
relative_attention_num_buckets=32,
|
16 |
+
relative_attention_max_distance=128,
|
17 |
+
num_labels=1,
|
18 |
+
dropout_rate=0.1,
|
19 |
+
layer_norm_epsilon=1e-6,
|
20 |
+
initializer_factor=1.0,
|
21 |
+
feed_forward_proj="gated-gelu",
|
22 |
+
is_encoder_decoder=True,
|
23 |
+
use_cache=True,
|
24 |
+
tokenizer_class="T5Tokenizer",
|
25 |
+
tie_word_embeddings=True,
|
26 |
+
pad_token_id=0,
|
27 |
+
eos_token_id=1,
|
28 |
+
decoder_start_token_id=2,
|
29 |
+
classifier_dropout=0.1,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
super().__init__(
|
33 |
+
is_encoder_decoder=is_encoder_decoder,
|
34 |
+
tokenizer_class=tokenizer_class,
|
35 |
+
tie_word_embeddings=tie_word_embeddings,
|
36 |
+
pad_token_id=pad_token_id,
|
37 |
+
eos_token_id=eos_token_id,
|
38 |
+
decoder_start_token_id=decoder_start_token_id,
|
39 |
+
**kwargs,
|
40 |
+
)
|
41 |
+
self.vocab_size = vocab_size
|
42 |
+
self.d_model = d_model
|
43 |
+
self.d_kv = d_kv
|
44 |
+
self.d_ff = d_ff
|
45 |
+
self.num_layers = num_layers
|
46 |
+
self.num_decoder_layers = (
|
47 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
48 |
+
) # default = symmetry
|
49 |
+
self.num_heads = num_heads
|
50 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
51 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
52 |
+
self.num_labels = num_labels
|
53 |
+
self.dropout_rate = dropout_rate
|
54 |
+
self.classifier_dropout = classifier_dropout
|
55 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
56 |
+
self.initializer_factor = initializer_factor
|
57 |
+
self.feed_forward_proj = feed_forward_proj
|
58 |
+
self.use_cache = use_cache
|
59 |
+
|
60 |
+
act_info = self.feed_forward_proj.split("-")
|
61 |
+
self.dense_act_fn = act_info[-1]
|
62 |
+
self.is_gated_act = act_info[0] == "gated"
|
63 |
+
|
64 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
65 |
+
raise ValueError(
|
66 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
|
67 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
68 |
+
"'gated-gelu' or 'relu'"
|
69 |
+
)
|
70 |
+
|
71 |
+
if feed_forward_proj == "gated-gelu":
|
72 |
+
self.dense_act_fn = "gelu_new"
|
73 |
+
|
74 |
+
@property
|
75 |
+
def hidden_size(self):
|
76 |
+
return self.d_model
|
77 |
+
|
78 |
+
@property
|
79 |
+
def num_attention_heads(self):
|
80 |
+
return self.num_heads
|
81 |
+
|
82 |
+
@property
|
83 |
+
def num_hidden_layers(self):
|
84 |
+
return self.num_layers
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aa6984ac3f9219b5fae903a5d57fbf14065d5e1c1b77304b10cbeb179e6ce78
|
3 |
+
size 701360012
|
modeling_rankingprompter.py
ADDED
@@ -0,0 +1,1723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" modified PyTorch UMT5 model. add save attention weights function so that we can compute grad-cam."""
|
2 |
+
|
3 |
+
import copy
|
4 |
+
import math
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.utils.checkpoint import checkpoint
|
10 |
+
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
from transformers.modeling_outputs import (
|
13 |
+
BaseModelOutput,
|
14 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
15 |
+
Seq2SeqModelOutput,
|
16 |
+
)
|
17 |
+
from transformers import PreTrainedModel, UMT5Config
|
18 |
+
from transformers.utils import (
|
19 |
+
DUMMY_INPUTS,
|
20 |
+
DUMMY_MASK,
|
21 |
+
add_start_docstrings,
|
22 |
+
add_start_docstrings_to_model_forward,
|
23 |
+
is_torch_fx_proxy,
|
24 |
+
logging,
|
25 |
+
replace_return_docstrings,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
_CONFIG_FOR_DOC = "UMT5Config"
|
32 |
+
_CHECKPOINT_FOR_DOC = "google/umt5-small"
|
33 |
+
|
34 |
+
|
35 |
+
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5
|
36 |
+
class UMT5LayerNorm(nn.Module):
|
37 |
+
def __init__(self, hidden_size, eps=1e-6):
|
38 |
+
"""
|
39 |
+
Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean.
|
40 |
+
"""
|
41 |
+
super().__init__()
|
42 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
43 |
+
self.variance_epsilon = eps
|
44 |
+
|
45 |
+
def forward(self, hidden_states):
|
46 |
+
# UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
47 |
+
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
|
48 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
49 |
+
# half-precision inputs is done in fp32
|
50 |
+
|
51 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
52 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
53 |
+
|
54 |
+
# convert into half-precision if necessary
|
55 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
56 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
57 |
+
|
58 |
+
return self.weight * hidden_states
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5
|
62 |
+
class UMT5DenseActDense(nn.Module):
|
63 |
+
def __init__(self, config: UMT5Config):
|
64 |
+
super().__init__()
|
65 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
66 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
67 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
68 |
+
self.act = ACT2FN[config.dense_act_fn]
|
69 |
+
|
70 |
+
def forward(self, hidden_states):
|
71 |
+
hidden_states = self.wi(hidden_states)
|
72 |
+
hidden_states = self.act(hidden_states)
|
73 |
+
hidden_states = self.dropout(hidden_states)
|
74 |
+
if (
|
75 |
+
isinstance(self.wo.weight, torch.Tensor)
|
76 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
77 |
+
and self.wo.weight.dtype != torch.int8
|
78 |
+
):
|
79 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
80 |
+
hidden_states = self.wo(hidden_states)
|
81 |
+
return hidden_states
|
82 |
+
|
83 |
+
|
84 |
+
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5
|
85 |
+
class UMT5DenseGatedActDense(nn.Module):
|
86 |
+
def __init__(self, config: UMT5Config):
|
87 |
+
super().__init__()
|
88 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
89 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
90 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
91 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
92 |
+
self.act = ACT2FN[config.dense_act_fn]
|
93 |
+
|
94 |
+
def forward(self, hidden_states):
|
95 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
96 |
+
hidden_linear = self.wi_1(hidden_states)
|
97 |
+
hidden_states = hidden_gelu * hidden_linear
|
98 |
+
hidden_states = self.dropout(hidden_states)
|
99 |
+
|
100 |
+
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
|
101 |
+
# See https://github.com/huggingface/transformers/issues/20287
|
102 |
+
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
|
103 |
+
if (
|
104 |
+
isinstance(self.wo.weight, torch.Tensor)
|
105 |
+
and hidden_states.dtype != self.wo.weight.dtype
|
106 |
+
and self.wo.weight.dtype != torch.int8
|
107 |
+
):
|
108 |
+
hidden_states = hidden_states.to(self.wo.weight.dtype)
|
109 |
+
|
110 |
+
hidden_states = self.wo(hidden_states)
|
111 |
+
return hidden_states
|
112 |
+
|
113 |
+
|
114 |
+
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5
|
115 |
+
class UMT5LayerFF(nn.Module):
|
116 |
+
def __init__(self, config: UMT5Config):
|
117 |
+
super().__init__()
|
118 |
+
if config.is_gated_act:
|
119 |
+
self.DenseReluDense = UMT5DenseGatedActDense(config)
|
120 |
+
else:
|
121 |
+
self.DenseReluDense = UMT5DenseActDense(config)
|
122 |
+
|
123 |
+
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
124 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
125 |
+
|
126 |
+
def forward(self, hidden_states):
|
127 |
+
forwarded_states = self.layer_norm(hidden_states)
|
128 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
129 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
130 |
+
return hidden_states
|
131 |
+
|
132 |
+
|
133 |
+
class UMT5Attention(nn.Module):
|
134 |
+
"""
|
135 |
+
T5's attention using relative_attention_bias.
|
136 |
+
"""
|
137 |
+
|
138 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
139 |
+
super().__init__()
|
140 |
+
self.is_decoder = config.is_decoder
|
141 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
142 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
143 |
+
self.relative_attention_max_distance = config.relative_attention_max_distance
|
144 |
+
self.d_model = config.d_model
|
145 |
+
self.key_value_proj_dim = config.d_kv
|
146 |
+
self.n_heads = config.num_heads
|
147 |
+
self.dropout = config.dropout_rate
|
148 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
149 |
+
|
150 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
151 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
152 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
153 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
154 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
155 |
+
|
156 |
+
if self.has_relative_attention_bias:
|
157 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
158 |
+
self.pruned_heads = set()
|
159 |
+
|
160 |
+
# save attention weights
|
161 |
+
self.save_attention = False
|
162 |
+
self.attn_gradients = None
|
163 |
+
self.attention_map = None
|
164 |
+
|
165 |
+
def save_attn_gradients(self, attn_gradients):
|
166 |
+
self.attn_gradients = attn_gradients
|
167 |
+
|
168 |
+
def get_attn_gradients(self):
|
169 |
+
return self.attn_gradients
|
170 |
+
|
171 |
+
def save_attention_map(self, attention_map):
|
172 |
+
self.attention_map = attention_map
|
173 |
+
|
174 |
+
def get_attention_map(self):
|
175 |
+
return self.attention_map
|
176 |
+
|
177 |
+
def _shape(self, projection: torch.Tensor) -> torch.Tensor:
|
178 |
+
new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim)
|
179 |
+
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
|
180 |
+
new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
|
181 |
+
return new_projection
|
182 |
+
|
183 |
+
def _relative_position_bucket(self, relative_position):
|
184 |
+
"""
|
185 |
+
Adapted from Mesh Tensorflow:
|
186 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
187 |
+
|
188 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
189 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
190 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
191 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
192 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
193 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
194 |
+
|
195 |
+
Args:
|
196 |
+
relative_position: an int32 Tensor
|
197 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
198 |
+
num_buckets: an integer
|
199 |
+
max_distance: an integer
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
203 |
+
"""
|
204 |
+
relative_buckets = 0
|
205 |
+
num_buckets = self.relative_attention_num_buckets
|
206 |
+
max_distance = self.relative_attention_max_distance
|
207 |
+
if not self.is_decoder:
|
208 |
+
num_buckets //= 2
|
209 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
210 |
+
relative_position = torch.abs(relative_position)
|
211 |
+
else:
|
212 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
213 |
+
# now relative_position is in the range [0, inf)
|
214 |
+
|
215 |
+
# half of the buckets are for exact increments in positions
|
216 |
+
max_exact = num_buckets // 2
|
217 |
+
is_small = relative_position < max_exact
|
218 |
+
|
219 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
220 |
+
log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact)
|
221 |
+
log_ratio = log_ratio * (num_buckets - max_exact)
|
222 |
+
relative_position_if_large = max_exact + log_ratio.to(torch.long)
|
223 |
+
relative_position_if_large = torch.min(
|
224 |
+
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
|
225 |
+
)
|
226 |
+
|
227 |
+
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
228 |
+
return relative_buckets
|
229 |
+
|
230 |
+
def compute_bias(self, query_length, key_length, device=None):
|
231 |
+
"""Compute binned relative position bias"""
|
232 |
+
if device is None:
|
233 |
+
device = self.relative_attention_bias.weight.device
|
234 |
+
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
235 |
+
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
236 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
237 |
+
relative_position_bucket = self._relative_position_bucket(relative_position)
|
238 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
239 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
240 |
+
return values
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self,
|
244 |
+
hidden_states: torch.Tensor,
|
245 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
246 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
248 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
249 |
+
):
|
250 |
+
is_cross_attention = encoder_hidden_states is not None
|
251 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
252 |
+
|
253 |
+
# use encoder_hidden_states if cross attention
|
254 |
+
current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
255 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as the he provided
|
256 |
+
# `encoder_hidden_states` to support prefix tuning
|
257 |
+
if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
|
258 |
+
# reuse k,v, cross_attentions
|
259 |
+
key_states = past_key_value[0]
|
260 |
+
value_states = past_key_value[1]
|
261 |
+
else:
|
262 |
+
key_states = self._shape(self.k(current_states))
|
263 |
+
value_states = self._shape(self.v(current_states))
|
264 |
+
if past_key_value is not None and not is_cross_attention:
|
265 |
+
# reuse k, v, self_attention
|
266 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
267 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
268 |
+
|
269 |
+
query_states = self._shape(self.q(hidden_states))
|
270 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
271 |
+
|
272 |
+
# compute positional bias
|
273 |
+
if self.has_relative_attention_bias:
|
274 |
+
query_length = seq_length
|
275 |
+
if past_key_value is not None:
|
276 |
+
query_length += past_key_value[0].shape[2]
|
277 |
+
position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device)
|
278 |
+
else:
|
279 |
+
position_bias = torch.zeros(
|
280 |
+
(1, self.n_heads, seq_length, key_states.size(2)),
|
281 |
+
device=attention_scores.device,
|
282 |
+
dtype=attention_scores.dtype,
|
283 |
+
requires_grad=self.training,
|
284 |
+
)
|
285 |
+
if past_key_value is not None:
|
286 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
287 |
+
if attention_mask is not None:
|
288 |
+
position_bias = position_bias + attention_mask # (batch_size, n_heads, seq_length, key_length)
|
289 |
+
|
290 |
+
if self.is_decoder:
|
291 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
292 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
293 |
+
# key/value_states (first "if" case)
|
294 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
295 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
296 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
297 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
298 |
+
past_key_value = (key_states, value_states)
|
299 |
+
|
300 |
+
attention_scores += position_bias
|
301 |
+
# (batch_size, n_heads, seq_length, key_length)
|
302 |
+
attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
|
303 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
304 |
+
|
305 |
+
# Mask heads if we want to
|
306 |
+
if layer_head_mask is not None:
|
307 |
+
attn_weights = attn_weights * layer_head_mask
|
308 |
+
|
309 |
+
# save attention weights
|
310 |
+
if self.save_attention:
|
311 |
+
self.save_attention_map(attn_weights)
|
312 |
+
attn_weights.register_hook(self.save_attn_gradients)
|
313 |
+
|
314 |
+
# attn_output = torch.bmm(attn_probs, value_states) ?
|
315 |
+
context_states = torch.matmul(attn_weights, value_states)
|
316 |
+
# attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
|
317 |
+
context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
|
318 |
+
attn_output = self.o(context_states)
|
319 |
+
return attn_output, attn_weights, past_key_value
|
320 |
+
|
321 |
+
|
322 |
+
class UMT5LayerSelfAttention(nn.Module):
|
323 |
+
def __init__(self, config):
|
324 |
+
super().__init__()
|
325 |
+
self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True)
|
326 |
+
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
327 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
328 |
+
|
329 |
+
def forward(
|
330 |
+
self,
|
331 |
+
hidden_states,
|
332 |
+
attention_mask=None,
|
333 |
+
layer_head_mask=None,
|
334 |
+
past_key_value=None,
|
335 |
+
):
|
336 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
337 |
+
attention_output = self.SelfAttention(
|
338 |
+
normed_hidden_states,
|
339 |
+
attention_mask=attention_mask,
|
340 |
+
layer_head_mask=layer_head_mask,
|
341 |
+
past_key_value=past_key_value,
|
342 |
+
)
|
343 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
344 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
345 |
+
return outputs
|
346 |
+
|
347 |
+
|
348 |
+
class UMT5LayerCrossAttention(nn.Module):
|
349 |
+
def __init__(self, config):
|
350 |
+
super().__init__()
|
351 |
+
self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False)
|
352 |
+
self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
353 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
hidden_states,
|
358 |
+
encoder_hidden_states=None,
|
359 |
+
attention_mask=None,
|
360 |
+
layer_head_mask=None,
|
361 |
+
past_key_value=None,
|
362 |
+
):
|
363 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
364 |
+
attention_output = self.EncDecAttention(
|
365 |
+
normed_hidden_states,
|
366 |
+
encoder_hidden_states=encoder_hidden_states,
|
367 |
+
attention_mask=attention_mask,
|
368 |
+
layer_head_mask=layer_head_mask,
|
369 |
+
past_key_value=past_key_value,
|
370 |
+
)
|
371 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
372 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
373 |
+
return outputs
|
374 |
+
|
375 |
+
|
376 |
+
class UMT5Block(nn.Module):
|
377 |
+
def __init__(self, config):
|
378 |
+
super().__init__()
|
379 |
+
self.is_decoder = config.is_decoder
|
380 |
+
self.layer = nn.ModuleList()
|
381 |
+
self.layer.append(UMT5LayerSelfAttention(config))
|
382 |
+
if self.is_decoder:
|
383 |
+
self.layer.append(UMT5LayerCrossAttention(config))
|
384 |
+
|
385 |
+
self.layer.append(UMT5LayerFF(config))
|
386 |
+
|
387 |
+
def forward(
|
388 |
+
self,
|
389 |
+
hidden_states,
|
390 |
+
attention_mask=None,
|
391 |
+
encoder_hidden_states=None,
|
392 |
+
encoder_attention_mask=None,
|
393 |
+
layer_head_mask=None,
|
394 |
+
cross_attn_layer_head_mask=None,
|
395 |
+
past_key_value=None,
|
396 |
+
use_cache=False,
|
397 |
+
output_attentions=False,
|
398 |
+
):
|
399 |
+
# Self Attention
|
400 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
401 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
402 |
+
|
403 |
+
hidden_states, self_attn_weights, present_key_value = self.layer[0](
|
404 |
+
hidden_states,
|
405 |
+
attention_mask=attention_mask,
|
406 |
+
layer_head_mask=layer_head_mask,
|
407 |
+
past_key_value=self_attn_past_key_value,
|
408 |
+
)
|
409 |
+
|
410 |
+
# clamp inf values to enable fp16 training
|
411 |
+
if hidden_states.dtype == torch.float16:
|
412 |
+
max_dtype = torch.finfo(hidden_states.dtype).max
|
413 |
+
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
|
414 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
415 |
+
|
416 |
+
# Cross-Attention Block
|
417 |
+
cross_attn_present_key_value = None
|
418 |
+
cross_attn_weights = None
|
419 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
420 |
+
if do_cross_attention:
|
421 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
422 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
423 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1](
|
424 |
+
hidden_states,
|
425 |
+
encoder_hidden_states=encoder_hidden_states,
|
426 |
+
attention_mask=encoder_attention_mask,
|
427 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
428 |
+
past_key_value=cross_attn_past_key_value,
|
429 |
+
)
|
430 |
+
# clamp inf values to enable fp16 training
|
431 |
+
if hidden_states.dtype == torch.float16:
|
432 |
+
max_dtype = torch.finfo(hidden_states.dtype).max
|
433 |
+
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
|
434 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
435 |
+
|
436 |
+
present_key_value += cross_attn_present_key_value
|
437 |
+
|
438 |
+
# Apply Feed Forward layer
|
439 |
+
hidden_states = self.layer[-1](hidden_states)
|
440 |
+
|
441 |
+
# clamp inf values to enable fp16 training
|
442 |
+
if hidden_states.dtype == torch.float16:
|
443 |
+
max_dtype = torch.finfo(hidden_states.dtype).max
|
444 |
+
clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
|
445 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
446 |
+
|
447 |
+
outputs = (
|
448 |
+
hidden_states,
|
449 |
+
present_key_value,
|
450 |
+
)
|
451 |
+
|
452 |
+
if output_attentions:
|
453 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
454 |
+
|
455 |
+
return outputs
|
456 |
+
|
457 |
+
|
458 |
+
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5
|
459 |
+
class UMT5ClassificationHead(nn.Module):
|
460 |
+
"""Head for sentence-level classification tasks."""
|
461 |
+
|
462 |
+
def __init__(self, config: UMT5Config):
|
463 |
+
super().__init__()
|
464 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
465 |
+
self.dropout = nn.Dropout(p=config.classifier_dropout)
|
466 |
+
self.out_proj = nn.Linear(config.d_model, config.num_labels)
|
467 |
+
|
468 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
hidden_states = self.dense(hidden_states)
|
471 |
+
hidden_states = torch.tanh(hidden_states)
|
472 |
+
hidden_states = self.dropout(hidden_states)
|
473 |
+
hidden_states = self.out_proj(hidden_states)
|
474 |
+
return hidden_states
|
475 |
+
|
476 |
+
|
477 |
+
class UMT5PreTrainedModel(PreTrainedModel):
|
478 |
+
"""
|
479 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
480 |
+
models.
|
481 |
+
"""
|
482 |
+
|
483 |
+
config_class = UMT5Config
|
484 |
+
base_model_prefix = "transformer"
|
485 |
+
supports_gradient_checkpointing = True
|
486 |
+
_no_split_modules = ["UMT5Block"]
|
487 |
+
_keep_in_fp32_modules = ["wo"]
|
488 |
+
|
489 |
+
@property
|
490 |
+
def dummy_inputs(self):
|
491 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
492 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
493 |
+
dummy_inputs = {
|
494 |
+
"decoder_input_ids": input_ids,
|
495 |
+
"input_ids": input_ids,
|
496 |
+
"decoder_attention_mask": input_mask,
|
497 |
+
}
|
498 |
+
return dummy_inputs
|
499 |
+
|
500 |
+
def _init_weights(self, module):
|
501 |
+
"""Initialize the weights"""
|
502 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
503 |
+
if isinstance(module, UMT5LayerNorm):
|
504 |
+
module.weight.data.fill_(factor * 1.0)
|
505 |
+
elif isinstance(
|
506 |
+
module,
|
507 |
+
(
|
508 |
+
UMT5Model,
|
509 |
+
),
|
510 |
+
):
|
511 |
+
# Mesh TensorFlow embeddings initialization
|
512 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
513 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
514 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
515 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
516 |
+
if hasattr(module, "qa_outputs"):
|
517 |
+
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
518 |
+
module.qa_outputs.bias.data.zero_()
|
519 |
+
elif isinstance(module, UMT5ClassificationHead):
|
520 |
+
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
521 |
+
if hasattr(module.dense, "bias") and module.dense.bias is not None:
|
522 |
+
module.dense.bias.data.zero_()
|
523 |
+
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
524 |
+
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
|
525 |
+
module.out_proj.bias.data.zero_()
|
526 |
+
elif isinstance(module, UMT5DenseActDense):
|
527 |
+
# Mesh TensorFlow FF initialization
|
528 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
529 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
530 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
531 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
532 |
+
module.wi.bias.data.zero_()
|
533 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
534 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
535 |
+
module.wo.bias.data.zero_()
|
536 |
+
elif isinstance(module, UMT5DenseGatedActDense):
|
537 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
538 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
539 |
+
module.wi_0.bias.data.zero_()
|
540 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
541 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
542 |
+
module.wi_1.bias.data.zero_()
|
543 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
544 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
545 |
+
module.wo.bias.data.zero_()
|
546 |
+
elif isinstance(module, UMT5Attention):
|
547 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
548 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
549 |
+
d_model = self.config.d_model
|
550 |
+
key_value_proj_dim = self.config.d_kv
|
551 |
+
n_heads = self.config.num_heads
|
552 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
553 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
554 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
555 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
556 |
+
if module.has_relative_attention_bias:
|
557 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
558 |
+
|
559 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
560 |
+
if isinstance(module, (UMT5Attention, UMT5Stack)):
|
561 |
+
module.gradient_checkpointing = value
|
562 |
+
|
563 |
+
def _shift_right(self, input_ids):
|
564 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
565 |
+
pad_token_id = self.config.pad_token_id
|
566 |
+
|
567 |
+
if decoder_start_token_id is None:
|
568 |
+
raise ValueError(
|
569 |
+
"self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id."
|
570 |
+
"See UMT5 docs for more information."
|
571 |
+
)
|
572 |
+
|
573 |
+
# shift inputs to the right
|
574 |
+
if is_torch_fx_proxy(input_ids):
|
575 |
+
# Item assignment is not supported natively for proxies.
|
576 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
577 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
578 |
+
else:
|
579 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
580 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
581 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
582 |
+
|
583 |
+
if pad_token_id is None:
|
584 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
585 |
+
# replace possible -100 values in labels by `pad_token_id`
|
586 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
587 |
+
|
588 |
+
return shifted_input_ids
|
589 |
+
|
590 |
+
|
591 |
+
class UMT5Stack(UMT5PreTrainedModel):
|
592 |
+
def __init__(self, config, embed_tokens=None):
|
593 |
+
super().__init__(config)
|
594 |
+
self.embed_tokens = embed_tokens
|
595 |
+
self.is_decoder = config.is_decoder
|
596 |
+
self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)])
|
597 |
+
self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
598 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
599 |
+
|
600 |
+
# Initialize weights and apply final processing
|
601 |
+
self.gradient_checkpointing = False
|
602 |
+
self.post_init()
|
603 |
+
|
604 |
+
def get_input_embeddings(self):
|
605 |
+
return self.embed_tokens
|
606 |
+
|
607 |
+
def set_input_embeddings(self, new_embeddings):
|
608 |
+
self.embed_tokens = new_embeddings
|
609 |
+
|
610 |
+
def forward(
|
611 |
+
self,
|
612 |
+
input_ids=None,
|
613 |
+
attention_mask=None,
|
614 |
+
encoder_hidden_states=None,
|
615 |
+
encoder_attention_mask=None,
|
616 |
+
inputs_embeds=None,
|
617 |
+
head_mask=None,
|
618 |
+
cross_attn_head_mask=None,
|
619 |
+
past_key_values=None,
|
620 |
+
use_cache=None,
|
621 |
+
output_attentions=None,
|
622 |
+
output_hidden_states=None,
|
623 |
+
return_dict=None,
|
624 |
+
):
|
625 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
626 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
627 |
+
output_hidden_states = (
|
628 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
629 |
+
)
|
630 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
631 |
+
|
632 |
+
if input_ids is not None and inputs_embeds is not None:
|
633 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
634 |
+
raise ValueError(
|
635 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
636 |
+
)
|
637 |
+
elif input_ids is not None:
|
638 |
+
input_shape = input_ids.size()
|
639 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
640 |
+
elif inputs_embeds is not None:
|
641 |
+
input_shape = inputs_embeds.size()[:-1]
|
642 |
+
else:
|
643 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
644 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
645 |
+
|
646 |
+
if inputs_embeds is None:
|
647 |
+
if self.embed_tokens is None:
|
648 |
+
raise ValueError("You have to initialize the model with valid token embeddings")
|
649 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
650 |
+
|
651 |
+
batch_size, seq_length = input_shape
|
652 |
+
|
653 |
+
# required mask seq length can be calculated via length of past
|
654 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
655 |
+
|
656 |
+
if use_cache is True:
|
657 |
+
if not self.is_decoder:
|
658 |
+
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
659 |
+
|
660 |
+
if attention_mask is None:
|
661 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
662 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
663 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
664 |
+
encoder_attention_mask = torch.ones(
|
665 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
666 |
+
)
|
667 |
+
|
668 |
+
# initialize past_key_values with `None` if past does not exist
|
669 |
+
if past_key_values is None:
|
670 |
+
past_key_values = [None] * len(self.block)
|
671 |
+
|
672 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
673 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
674 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
675 |
+
|
676 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
677 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
678 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
679 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
680 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
681 |
+
if encoder_attention_mask is None:
|
682 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
683 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
684 |
+
else:
|
685 |
+
encoder_extended_attention_mask = None
|
686 |
+
|
687 |
+
if self.gradient_checkpointing and self.training:
|
688 |
+
if use_cache:
|
689 |
+
logger.warning_once(
|
690 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
691 |
+
)
|
692 |
+
use_cache = False
|
693 |
+
|
694 |
+
# Prepare head mask if needed
|
695 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
696 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
697 |
+
present_key_value_states = () if use_cache else None
|
698 |
+
all_hidden_states = () if output_hidden_states else None
|
699 |
+
all_attentions = () if output_attentions else None
|
700 |
+
all_cross_attentions = () if output_attentions and self.is_decoder else None
|
701 |
+
|
702 |
+
hidden_states = self.dropout(inputs_embeds)
|
703 |
+
|
704 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
705 |
+
layer_head_mask = head_mask[i]
|
706 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
707 |
+
|
708 |
+
if output_hidden_states:
|
709 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
710 |
+
|
711 |
+
if self.gradient_checkpointing and self.training:
|
712 |
+
|
713 |
+
def create_custom_forward(module):
|
714 |
+
def custom_forward(*inputs):
|
715 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
716 |
+
|
717 |
+
return custom_forward
|
718 |
+
|
719 |
+
layer_outputs = checkpoint(
|
720 |
+
create_custom_forward(layer_module),
|
721 |
+
hidden_states,
|
722 |
+
extended_attention_mask,
|
723 |
+
encoder_hidden_states,
|
724 |
+
encoder_extended_attention_mask,
|
725 |
+
layer_head_mask,
|
726 |
+
cross_attn_layer_head_mask,
|
727 |
+
None, # past_key_value is always None with gradient checkpointing
|
728 |
+
)
|
729 |
+
else:
|
730 |
+
layer_outputs = layer_module(
|
731 |
+
hidden_states,
|
732 |
+
attention_mask=extended_attention_mask,
|
733 |
+
encoder_hidden_states=encoder_hidden_states,
|
734 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
735 |
+
layer_head_mask=layer_head_mask,
|
736 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
737 |
+
past_key_value=past_key_value,
|
738 |
+
use_cache=use_cache,
|
739 |
+
output_attentions=output_attentions,
|
740 |
+
)
|
741 |
+
|
742 |
+
hidden_states = layer_outputs[0]
|
743 |
+
|
744 |
+
if use_cache:
|
745 |
+
present_key_value_states += (layer_outputs[1],)
|
746 |
+
|
747 |
+
if output_attentions:
|
748 |
+
all_attentions += (layer_outputs[2],)
|
749 |
+
if self.is_decoder:
|
750 |
+
all_cross_attentions += (layer_outputs[3],)
|
751 |
+
|
752 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
753 |
+
hidden_states = self.dropout(hidden_states)
|
754 |
+
|
755 |
+
# Add last layer
|
756 |
+
if output_hidden_states:
|
757 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
758 |
+
|
759 |
+
if not return_dict:
|
760 |
+
return tuple(
|
761 |
+
v
|
762 |
+
for v in [
|
763 |
+
hidden_states,
|
764 |
+
present_key_value_states,
|
765 |
+
all_hidden_states,
|
766 |
+
all_attentions,
|
767 |
+
all_cross_attentions,
|
768 |
+
]
|
769 |
+
if v is not None
|
770 |
+
)
|
771 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
772 |
+
last_hidden_state=hidden_states,
|
773 |
+
past_key_values=present_key_value_states,
|
774 |
+
hidden_states=all_hidden_states,
|
775 |
+
attentions=all_attentions,
|
776 |
+
cross_attentions=all_cross_attentions,
|
777 |
+
)
|
778 |
+
|
779 |
+
|
780 |
+
UMT5_START_DOCSTRING = r"""
|
781 |
+
|
782 |
+
The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
|
783 |
+
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
|
784 |
+
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
|
785 |
+
text-to-text denoising generative setting.
|
786 |
+
|
787 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
788 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
789 |
+
etc.)
|
790 |
+
|
791 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
792 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
793 |
+
and behavior.
|
794 |
+
|
795 |
+
Parameters:
|
796 |
+
config ([`UMT5Config`]): Model configuration class with all the parameters of the model.
|
797 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
798 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
799 |
+
"""
|
800 |
+
|
801 |
+
UMT5_INPUTS_DOCSTRING = r"""
|
802 |
+
Args:
|
803 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
804 |
+
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
|
805 |
+
you should be able to pad the inputs on both the right and the left.
|
806 |
+
|
807 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
808 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
809 |
+
|
810 |
+
[What are input IDs?](../glossary#input-ids)
|
811 |
+
|
812 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
|
813 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
814 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
815 |
+
|
816 |
+
- 1 for tokens that are **not masked**,
|
817 |
+
- 0 for tokens that are **masked**.
|
818 |
+
|
819 |
+
[What are attention masks?](../glossary#attention-mask)
|
820 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
821 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
822 |
+
|
823 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
824 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
825 |
+
|
826 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
827 |
+
|
828 |
+
UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
829 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
830 |
+
|
831 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5
|
832 |
+
Training](./umt5#training).
|
833 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
834 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
835 |
+
be used by default.
|
836 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
837 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
838 |
+
1]`:
|
839 |
+
|
840 |
+
- 1 indicates the head is **not masked**,
|
841 |
+
- 0 indicates the head is **masked**.
|
842 |
+
|
843 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
844 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
845 |
+
1]`:
|
846 |
+
|
847 |
+
- 1 indicates the head is **not masked**,
|
848 |
+
- 0 indicates the head is **masked**.
|
849 |
+
|
850 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
851 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
852 |
+
`[0, 1]`:
|
853 |
+
|
854 |
+
- 1 indicates the head is **not masked**,
|
855 |
+
- 0 indicates the head is **masked**.
|
856 |
+
|
857 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
858 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
859 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
860 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
861 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
862 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
863 |
+
|
864 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
865 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
866 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
867 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
868 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
869 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
870 |
+
model's internal embedding lookup matrix.
|
871 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
872 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
873 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
874 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
875 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
876 |
+
|
877 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
878 |
+
of `inputs_embeds`.
|
879 |
+
|
880 |
+
use_cache (`bool`, *optional*):
|
881 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
882 |
+
`past_key_values`).
|
883 |
+
|
884 |
+
output_attentions (`bool`, *optional*):
|
885 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
886 |
+
tensors for more detail.
|
887 |
+
output_hidden_states (`bool`, *optional*):
|
888 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
889 |
+
more detail.
|
890 |
+
return_dict (`bool`, *optional*):
|
891 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
892 |
+
"""
|
893 |
+
|
894 |
+
UMT5_ENCODER_INPUTS_DOCSTRING = r"""
|
895 |
+
Args:
|
896 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
897 |
+
Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
|
898 |
+
you should be able to pad the inputs on both the right and the left.
|
899 |
+
|
900 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
901 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
902 |
+
|
903 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
|
904 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
905 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
906 |
+
|
907 |
+
- 1 for tokens that are **not masked**,
|
908 |
+
- 0 for tokens that are **masked**.
|
909 |
+
|
910 |
+
[What are attention masks?](../glossary#attention-mask)
|
911 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
912 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
913 |
+
|
914 |
+
- 1 indicates the head is **not masked**,
|
915 |
+
- 0 indicates the head is **masked**.
|
916 |
+
|
917 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
918 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
919 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
920 |
+
model's internal embedding lookup matrix.
|
921 |
+
output_attentions (`bool`, *optional*):
|
922 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
923 |
+
tensors for more detail.
|
924 |
+
output_hidden_states (`bool`, *optional*):
|
925 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
926 |
+
more detail.
|
927 |
+
return_dict (`bool`, *optional*):
|
928 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
929 |
+
"""
|
930 |
+
|
931 |
+
|
932 |
+
@add_start_docstrings(
|
933 |
+
"The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.",
|
934 |
+
UMT5_START_DOCSTRING,
|
935 |
+
)
|
936 |
+
class UMT5Model(UMT5PreTrainedModel):
|
937 |
+
r"""
|
938 |
+
Examples:
|
939 |
+
|
940 |
+
```python
|
941 |
+
>>> from transformers import UMT5Model, AutoTokenizer
|
942 |
+
|
943 |
+
>>> model = UMT5Model.from_pretrained("google/umt5-small")
|
944 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
|
945 |
+
>>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
|
946 |
+
>>> label = "<extra_id_0> verhandelt"
|
947 |
+
>>> inputs = tokenizer(inputs, return_tensors="pt")
|
948 |
+
>>> labels = tokenizer(label=label, return_tensors="pt")
|
949 |
+
|
950 |
+
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
|
951 |
+
>>> hidden_states = outputs.last_hidden_state
|
952 |
+
```"""
|
953 |
+
model_type = "uumt5"
|
954 |
+
config_class = UMT5Config
|
955 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
956 |
+
|
957 |
+
def __init__(self, config):
|
958 |
+
super().__init__(config)
|
959 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
960 |
+
|
961 |
+
encoder_config = copy.deepcopy(config)
|
962 |
+
encoder_config.is_decoder = False
|
963 |
+
encoder_config.use_cache = False
|
964 |
+
encoder_config.is_encoder_decoder = False
|
965 |
+
self.encoder = UMT5Stack(encoder_config, self.shared)
|
966 |
+
|
967 |
+
decoder_config = copy.deepcopy(config)
|
968 |
+
decoder_config.is_decoder = True
|
969 |
+
decoder_config.is_encoder_decoder = False
|
970 |
+
decoder_config.num_layers = config.num_decoder_layers
|
971 |
+
self.decoder = UMT5Stack(decoder_config, self.shared)
|
972 |
+
|
973 |
+
# Initialize weights and apply final processing
|
974 |
+
self.post_init()
|
975 |
+
|
976 |
+
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
|
977 |
+
def get_input_embeddings(self):
|
978 |
+
return self.shared
|
979 |
+
|
980 |
+
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
|
981 |
+
def set_input_embeddings(self, new_embeddings):
|
982 |
+
self.shared = new_embeddings
|
983 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
984 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
985 |
+
|
986 |
+
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
|
987 |
+
def get_encoder(self):
|
988 |
+
return self.encoder
|
989 |
+
|
990 |
+
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
|
991 |
+
def get_decoder(self):
|
992 |
+
return self.decoder
|
993 |
+
|
994 |
+
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
|
995 |
+
def _prune_heads(self, heads_to_prune):
|
996 |
+
"""
|
997 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
998 |
+
class PreTrainedModel
|
999 |
+
"""
|
1000 |
+
for layer, heads in heads_to_prune.items():
|
1001 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1002 |
+
|
1003 |
+
@add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
|
1004 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1005 |
+
def forward(
|
1006 |
+
self,
|
1007 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1008 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1009 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1010 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
1011 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1012 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
1013 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1014 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1015 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1016 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1017 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
1018 |
+
use_cache: Optional[bool] = None,
|
1019 |
+
output_attentions: Optional[bool] = None,
|
1020 |
+
output_hidden_states: Optional[bool] = None,
|
1021 |
+
return_dict: Optional[bool] = None,
|
1022 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
1023 |
+
r"""
|
1024 |
+
Returns:
|
1025 |
+
|
1026 |
+
Example:
|
1027 |
+
|
1028 |
+
```python
|
1029 |
+
>>> from transformers import AutoTokenizer, UMT5Model
|
1030 |
+
|
1031 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
|
1032 |
+
>>> model = UMT5Model.from_pretrained("google/umt5-small")
|
1033 |
+
|
1034 |
+
>>> input_ids = tokenizer(
|
1035 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1036 |
+
... ).input_ids # Batch size 1
|
1037 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1038 |
+
|
1039 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
|
1040 |
+
>>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
|
1041 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
1042 |
+
|
1043 |
+
>>> # forward pass
|
1044 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1045 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1046 |
+
```"""
|
1047 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1048 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1049 |
+
|
1050 |
+
# Encode if needed (training, first prediction pass)
|
1051 |
+
if encoder_outputs is None:
|
1052 |
+
encoder_outputs = self.encoder(
|
1053 |
+
input_ids=input_ids,
|
1054 |
+
attention_mask=attention_mask,
|
1055 |
+
inputs_embeds=inputs_embeds,
|
1056 |
+
head_mask=head_mask,
|
1057 |
+
output_attentions=output_attentions,
|
1058 |
+
output_hidden_states=output_hidden_states,
|
1059 |
+
return_dict=return_dict,
|
1060 |
+
)
|
1061 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1062 |
+
encoder_outputs = BaseModelOutput(
|
1063 |
+
last_hidden_state=encoder_outputs[0],
|
1064 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1065 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
hidden_states = encoder_outputs[0]
|
1069 |
+
|
1070 |
+
# Decode
|
1071 |
+
decoder_outputs = self.decoder(
|
1072 |
+
input_ids=decoder_input_ids,
|
1073 |
+
attention_mask=decoder_attention_mask,
|
1074 |
+
inputs_embeds=decoder_inputs_embeds,
|
1075 |
+
past_key_values=past_key_values,
|
1076 |
+
encoder_hidden_states=hidden_states,
|
1077 |
+
encoder_attention_mask=attention_mask,
|
1078 |
+
head_mask=decoder_head_mask,
|
1079 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1080 |
+
use_cache=use_cache,
|
1081 |
+
output_attentions=output_attentions,
|
1082 |
+
output_hidden_states=output_hidden_states,
|
1083 |
+
return_dict=return_dict,
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
if not return_dict:
|
1087 |
+
return decoder_outputs + encoder_outputs
|
1088 |
+
|
1089 |
+
return Seq2SeqModelOutput(
|
1090 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1091 |
+
past_key_values=decoder_outputs.past_key_values,
|
1092 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1093 |
+
decoder_attentions=decoder_outputs.attentions,
|
1094 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1095 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1096 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1097 |
+
encoder_attentions=encoder_outputs.attentions,
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
|
1101 |
+
# start of ranking prompter code
|
1102 |
+
|
1103 |
+
|
1104 |
+
from contextlib import nullcontext
|
1105 |
+
from dataclasses import dataclass
|
1106 |
+
from typing import Optional, Tuple, Union
|
1107 |
+
|
1108 |
+
import torch
|
1109 |
+
from torch import nn
|
1110 |
+
from torch.nn import CrossEntropyLoss
|
1111 |
+
from .configuration_rankingprompter import RankingPrompterConfig
|
1112 |
+
|
1113 |
+
|
1114 |
+
@dataclass
|
1115 |
+
class RankingPrompterForPreTrainingOutput:
|
1116 |
+
loss: torch.FloatTensor = None
|
1117 |
+
logits: torch.FloatTensor = None
|
1118 |
+
|
1119 |
+
|
1120 |
+
@dataclass
|
1121 |
+
class RankingPrompterOutput:
|
1122 |
+
loss: torch.FloatTensor = None
|
1123 |
+
logits: torch.FloatTensor = None
|
1124 |
+
lm_logits: torch.FloatTensor = None
|
1125 |
+
loss_lm: torch.FloatTensor = None
|
1126 |
+
loss_ranking: torch.FloatTensor = None
|
1127 |
+
|
1128 |
+
|
1129 |
+
|
1130 |
+
class RankingPrompterForPreTraining(UMT5Model):
|
1131 |
+
config_class = RankingPrompterConfig
|
1132 |
+
|
1133 |
+
_tied_weights_keys = [
|
1134 |
+
"encoder.embed_tokens.weight",
|
1135 |
+
"decoder.embed_tokens.weight",
|
1136 |
+
]
|
1137 |
+
|
1138 |
+
def __init__(self, config):
|
1139 |
+
# encoder, decoder and shared are from UMT5Model
|
1140 |
+
super().__init__(config)
|
1141 |
+
|
1142 |
+
# add ranking head
|
1143 |
+
self.ranking_head = nn.Linear(config.d_model, 1)
|
1144 |
+
|
1145 |
+
# Initialize weights and apply final processing
|
1146 |
+
self.post_init()
|
1147 |
+
|
1148 |
+
# ctx for mixed precision training
|
1149 |
+
self.ctx = nullcontext()
|
1150 |
+
|
1151 |
+
def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
|
1152 |
+
self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
|
1153 |
+
|
1154 |
+
def disable_amp_ctx(self):
|
1155 |
+
self.ctx = nullcontext()
|
1156 |
+
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
document_input_ids: Optional[torch.LongTensor] = None,
|
1160 |
+
document_attention_mask: Optional[torch.FloatTensor] = None,
|
1161 |
+
question_input_ids: Optional[torch.LongTensor] = None,
|
1162 |
+
question_attention_mask: Optional[torch.BoolTensor] = None,
|
1163 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1164 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1165 |
+
labels: Optional[torch.LongTensor] = None,
|
1166 |
+
use_cache: Optional[bool] = None,
|
1167 |
+
return_dict: Optional[bool] = None,
|
1168 |
+
) -> Union[Tuple[torch.FloatTensor], RankingPrompterForPreTrainingOutput]:
|
1169 |
+
r"""
|
1170 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1171 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1172 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1173 |
+
labels in `[0, ..., config.vocab_size]`
|
1174 |
+
|
1175 |
+
Returns:
|
1176 |
+
|
1177 |
+
```"""
|
1178 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1179 |
+
return_dict = (
|
1180 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1181 |
+
)
|
1182 |
+
# document_input_ids: [batch_size, num_doc, doc_seq_len]
|
1183 |
+
batch_size, num_doc, doc_seq_len = document_input_ids.shape
|
1184 |
+
#
|
1185 |
+
document_input_ids = document_input_ids.view(-1, doc_seq_len)
|
1186 |
+
# to [batch_size * num_doc, doc_seq_len]
|
1187 |
+
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
|
1188 |
+
|
1189 |
+
# Convert encoder inputs in embeddings if needed
|
1190 |
+
with self.ctx:
|
1191 |
+
encoder_outputs = self.encoder(
|
1192 |
+
input_ids=document_input_ids,
|
1193 |
+
attention_mask=document_attention_mask,
|
1194 |
+
return_dict=return_dict,
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
document_embeds = encoder_outputs[0]
|
1198 |
+
|
1199 |
+
# repeat question inputs for each document
|
1200 |
+
# question_input_ids: [batch_size, question_seq_len]
|
1201 |
+
question_seq_len = question_input_ids.shape[1]
|
1202 |
+
question_input_ids_expand = (
|
1203 |
+
question_input_ids.unsqueeze(1)
|
1204 |
+
.expand(-1, num_doc, -1)
|
1205 |
+
.reshape(-1, question_seq_len)
|
1206 |
+
) # [batch_size * num_doc, question_seq_len]
|
1207 |
+
question_attention_mask_expand = (
|
1208 |
+
question_attention_mask.unsqueeze(1)
|
1209 |
+
.expand(-1, num_doc, -1)
|
1210 |
+
.reshape(-1, question_seq_len)
|
1211 |
+
) # [batch_size * num_doc, question_seq_len]
|
1212 |
+
|
1213 |
+
# Decode
|
1214 |
+
with self.ctx:
|
1215 |
+
decoder_outputs = self.decoder(
|
1216 |
+
input_ids=question_input_ids_expand,
|
1217 |
+
attention_mask=question_attention_mask_expand,
|
1218 |
+
past_key_values=past_key_values,
|
1219 |
+
encoder_hidden_states=document_embeds,
|
1220 |
+
encoder_attention_mask=document_attention_mask,
|
1221 |
+
use_cache=use_cache,
|
1222 |
+
return_dict=return_dict,
|
1223 |
+
)
|
1224 |
+
# [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
|
1225 |
+
sequence_output = decoder_outputs[0]
|
1226 |
+
# [batch_size * num_doc, soft_prompt_len, hidden_size]
|
1227 |
+
question_seq_len = sequence_output.size(1)
|
1228 |
+
# [batch_size, num_doc, soft_prompt_len, hidden_size]
|
1229 |
+
soft_prompt_output = sequence_output.view(
|
1230 |
+
batch_size, num_doc, question_seq_len, -1
|
1231 |
+
)
|
1232 |
+
question_attention_mask_expand = question_attention_mask_expand.view(
|
1233 |
+
batch_size, num_doc, question_seq_len
|
1234 |
+
)
|
1235 |
+
# apply question attention mask
|
1236 |
+
soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)
|
1237 |
+
|
1238 |
+
# [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
|
1239 |
+
ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=2)).view(batch_size, num_doc)
|
1240 |
+
|
1241 |
+
# rank loss
|
1242 |
+
loss = None
|
1243 |
+
if labels is not None:
|
1244 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
|
1245 |
+
loss = loss_fct(ranking_logits, labels)
|
1246 |
+
|
1247 |
+
if not return_dict:
|
1248 |
+
output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
|
1249 |
+
return ((loss,) + output) if loss is not None else output
|
1250 |
+
|
1251 |
+
return RankingPrompterForPreTrainingOutput(
|
1252 |
+
loss=loss,
|
1253 |
+
logits=ranking_logits
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
|
1257 |
+
class RankingPrompter(UMT5Model):
|
1258 |
+
config_class = RankingPrompterConfig
|
1259 |
+
|
1260 |
+
_tied_weights_keys = [
|
1261 |
+
"encoder.embed_tokens.weight",
|
1262 |
+
"decoder.embed_tokens.weight",
|
1263 |
+
]
|
1264 |
+
|
1265 |
+
def __init__(self, config):
|
1266 |
+
# encoder, decoder and shared are from UMT5Model
|
1267 |
+
super().__init__(config)
|
1268 |
+
|
1269 |
+
# add ranking head
|
1270 |
+
self.ranking_head = nn.Linear(config.d_model, 1)
|
1271 |
+
|
1272 |
+
# Initialize weights and apply final processing
|
1273 |
+
self.post_init()
|
1274 |
+
|
1275 |
+
# ctx for mixed precision training
|
1276 |
+
self.ctx = nullcontext()
|
1277 |
+
|
1278 |
+
def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
|
1279 |
+
self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)
|
1280 |
+
|
1281 |
+
def disable_amp_ctx(self):
|
1282 |
+
self.ctx = nullcontext()
|
1283 |
+
|
1284 |
+
def encode_document(self, document_input_ids, document_attention_mask):
|
1285 |
+
# input shape: [batch_size * num_doc, doc_seq_len]
|
1286 |
+
# Convert encoder inputs in embeddings if needed
|
1287 |
+
with self.ctx:
|
1288 |
+
encoder_outputs = self.encoder(
|
1289 |
+
input_ids=document_input_ids,
|
1290 |
+
attention_mask=document_attention_mask,
|
1291 |
+
return_dict=False,
|
1292 |
+
)
|
1293 |
+
return encoder_outputs
|
1294 |
+
|
1295 |
+
def decode_answer(
|
1296 |
+
self,
|
1297 |
+
question_input_ids,
|
1298 |
+
question_attention_mask,
|
1299 |
+
document_embeds,
|
1300 |
+
document_attention_mask,
|
1301 |
+
answer_input_ids=None,
|
1302 |
+
answer_attention_mask=None
|
1303 |
+
):
|
1304 |
+
if answer_input_ids is not None and answer_attention_mask is not None:
|
1305 |
+
# append answer input ids to question input ids
|
1306 |
+
question_input_ids = torch.cat([question_input_ids, answer_input_ids], dim=1)
|
1307 |
+
question_attention_mask = torch.cat([question_attention_mask, answer_attention_mask], dim=1)
|
1308 |
+
|
1309 |
+
answer_outputs = self.decoder(
|
1310 |
+
input_ids=question_input_ids,
|
1311 |
+
attention_mask=question_attention_mask,
|
1312 |
+
encoder_hidden_states=document_embeds,
|
1313 |
+
encoder_attention_mask=document_attention_mask,
|
1314 |
+
return_dict=True,
|
1315 |
+
)
|
1316 |
+
return answer_outputs
|
1317 |
+
|
1318 |
+
def forward(
|
1319 |
+
self,
|
1320 |
+
document_input_ids: Optional[torch.LongTensor] = None,
|
1321 |
+
document_attention_mask: Optional[torch.FloatTensor] = None,
|
1322 |
+
question_input_ids: Optional[torch.LongTensor] = None,
|
1323 |
+
question_attention_mask: Optional[torch.BoolTensor] = None,
|
1324 |
+
answer_input_ids: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1325 |
+
answer_attention_mask: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1326 |
+
labels: Optional[torch.LongTensor] = None,
|
1327 |
+
use_cache: Optional[bool] = None,
|
1328 |
+
return_dict: Optional[bool] = None,
|
1329 |
+
) -> Union[Tuple[torch.FloatTensor], RankingPrompterOutput]:
|
1330 |
+
r"""
|
1331 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1332 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1333 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1334 |
+
labels in `[0, ..., config.vocab_size]`
|
1335 |
+
|
1336 |
+
Returns:
|
1337 |
+
|
1338 |
+
```"""
|
1339 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1340 |
+
return_dict = (
|
1341 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1342 |
+
)
|
1343 |
+
if len(document_input_ids.shape) == 2:
|
1344 |
+
# make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
|
1345 |
+
document_input_ids = document_input_ids.unsqueeze(1)
|
1346 |
+
document_attention_mask = document_attention_mask.unsqueeze(1)
|
1347 |
+
# document_input_ids: [batch_size, num_doc, doc_seq_len]
|
1348 |
+
batch_size, num_doc, doc_seq_len = document_input_ids.shape
|
1349 |
+
document_input_ids = document_input_ids.view(-1, doc_seq_len)
|
1350 |
+
# to [batch_size * num_doc, doc_seq_len]
|
1351 |
+
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
|
1352 |
+
|
1353 |
+
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
|
1354 |
+
document_embeds = encoder_outputs[0]
|
1355 |
+
|
1356 |
+
# repeat question inputs for each document
|
1357 |
+
# question_input_ids: [batch_size, question_seq_len]
|
1358 |
+
question_seq_len = question_input_ids.shape[1]
|
1359 |
+
question_input_ids_expand = (
|
1360 |
+
question_input_ids.unsqueeze(1)
|
1361 |
+
.expand(-1, num_doc, -1)
|
1362 |
+
.reshape(-1, question_seq_len)
|
1363 |
+
) # [batch_size * num_doc, question_seq_len]
|
1364 |
+
question_attention_mask_expand = (
|
1365 |
+
question_attention_mask.unsqueeze(1)
|
1366 |
+
.expand(-1, num_doc, -1)
|
1367 |
+
.reshape(-1, question_seq_len)
|
1368 |
+
) # [batch_size * num_doc, question_seq_len]
|
1369 |
+
|
1370 |
+
# Decode
|
1371 |
+
with self.ctx:
|
1372 |
+
decoder_outputs = self.decoder(
|
1373 |
+
input_ids=question_input_ids_expand,
|
1374 |
+
attention_mask=question_attention_mask_expand,
|
1375 |
+
encoder_hidden_states=document_embeds,
|
1376 |
+
encoder_attention_mask=document_attention_mask,
|
1377 |
+
use_cache=False,
|
1378 |
+
return_dict=True,
|
1379 |
+
)
|
1380 |
+
# [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
|
1381 |
+
sequence_output = decoder_outputs.last_hidden_state
|
1382 |
+
# [batch_size * num_doc, soft_prompt_len, hidden_size]
|
1383 |
+
question_seq_len = sequence_output.size(1)
|
1384 |
+
# [batch_size, num_doc, soft_prompt_len, hidden_size]
|
1385 |
+
soft_prompt_output = sequence_output.view(
|
1386 |
+
batch_size, num_doc, question_seq_len, -1
|
1387 |
+
)
|
1388 |
+
question_attention_mask_expand = question_attention_mask_expand.view(
|
1389 |
+
batch_size, num_doc, question_seq_len
|
1390 |
+
)
|
1391 |
+
# apply question attention mask
|
1392 |
+
soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)
|
1393 |
+
# get the real mean by the real length
|
1394 |
+
soft_prompt_output_mean = soft_prompt_output.sum(dim=2) / question_attention_mask_expand.sum(dim=2, keepdim=True)
|
1395 |
+
# [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
|
1396 |
+
ranking_logits = self.ranking_head(soft_prompt_output_mean).view(batch_size, num_doc)
|
1397 |
+
|
1398 |
+
# rank loss
|
1399 |
+
loss_ranking = None
|
1400 |
+
if labels is not None:
|
1401 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
|
1402 |
+
loss_ranking = loss_fct(ranking_logits, labels)
|
1403 |
+
# append bos token id to question input ids
|
1404 |
+
question_input_ids = torch.cat(
|
1405 |
+
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
|
1406 |
+
question_attention_mask = torch.cat(
|
1407 |
+
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
|
1408 |
+
# only take the first document for answer generation training
|
1409 |
+
answer_outputs = self.decode_answer(question_input_ids,
|
1410 |
+
question_attention_mask,
|
1411 |
+
document_embeds[::num_doc],
|
1412 |
+
document_attention_mask[::num_doc],
|
1413 |
+
answer_input_ids,
|
1414 |
+
answer_attention_mask)
|
1415 |
+
# lm loss
|
1416 |
+
loss_lm = None
|
1417 |
+
lm_logits = None
|
1418 |
+
if answer_input_ids is not None:
|
1419 |
+
# fill in question_input_ids with -100
|
1420 |
+
question_input_mask = torch.zeros_like(question_input_ids).fill_(-100)
|
1421 |
+
# mask padding token in answer_input_ids with -100
|
1422 |
+
answer_input_ids = answer_input_ids.masked_fill(answer_input_ids == self.config.pad_token_id, -100)
|
1423 |
+
# [batch_size, question_seq_len + answer_seq_len, hidden_size]
|
1424 |
+
lm_labels = torch.cat([question_input_mask, answer_input_ids], dim=1)[:, 1:].contiguous()
|
1425 |
+
lm_logits = (answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, :-1, :].contiguous()
|
1426 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
|
1427 |
+
loss_lm = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
|
1428 |
+
|
1429 |
+
if loss_ranking is not None and loss_lm is not None:
|
1430 |
+
loss = loss_ranking + loss_lm
|
1431 |
+
elif loss_ranking is not None:
|
1432 |
+
loss = loss_ranking
|
1433 |
+
elif loss_lm is not None:
|
1434 |
+
loss = loss_lm
|
1435 |
+
else:
|
1436 |
+
loss = None
|
1437 |
+
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return RankingPrompterOutput(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=ranking_logits,
|
1445 |
+
lm_logits=lm_logits,
|
1446 |
+
loss_lm=loss_lm,
|
1447 |
+
loss_ranking=loss_ranking,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
def generate_answer(
|
1451 |
+
self,
|
1452 |
+
document_input_ids: Optional[torch.LongTensor] = None,
|
1453 |
+
document_attention_mask: Optional[torch.FloatTensor] = None,
|
1454 |
+
question_input_ids: Optional[torch.LongTensor] = None,
|
1455 |
+
question_attention_mask: Optional[torch.BoolTensor] = None
|
1456 |
+
):
|
1457 |
+
if len(document_input_ids.shape) == 2:
|
1458 |
+
# make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
|
1459 |
+
document_input_ids = document_input_ids.unsqueeze(1)
|
1460 |
+
document_attention_mask = document_attention_mask.unsqueeze(1)
|
1461 |
+
# document_input_ids: [batch_size, num_doc, doc_seq_len]
|
1462 |
+
batch_size, num_doc, doc_seq_len = document_input_ids.shape
|
1463 |
+
document_input_ids = document_input_ids.view(-1, doc_seq_len)
|
1464 |
+
# to [batch_size * num_doc, doc_seq_len]
|
1465 |
+
document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
|
1466 |
+
document_embeds = self.encode_document(document_input_ids, document_attention_mask)[0]
|
1467 |
+
# append bos token id to question input ids
|
1468 |
+
question_input_ids = torch.cat(
|
1469 |
+
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
|
1470 |
+
question_attention_mask = torch.cat(
|
1471 |
+
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
|
1472 |
+
answer_outputs = self.decode_answer(question_input_ids,
|
1473 |
+
question_attention_mask,
|
1474 |
+
document_embeds[::num_doc],
|
1475 |
+
document_attention_mask[:num_doc])
|
1476 |
+
lm_logits = answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t()
|
1477 |
+
return lm_logits[:, -1:, :]
|
1478 |
+
|
1479 |
+
|
1480 |
+
def compute_ranking_grad_cam(
|
1481 |
+
self,
|
1482 |
+
document_input_ids,
|
1483 |
+
document_attention_mask,
|
1484 |
+
question_input_ids,
|
1485 |
+
question_attention_mask,
|
1486 |
+
block_num=-1,
|
1487 |
+
reduction="sum"):
|
1488 |
+
# 设置模型为evaluation模式, 开启保存attention map
|
1489 |
+
self.eval()
|
1490 |
+
attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
|
1491 |
+
attention_layer.save_attention = True
|
1492 |
+
|
1493 |
+
# 正向传播以获取特征图
|
1494 |
+
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
|
1495 |
+
document_embeds = encoder_outputs[0]
|
1496 |
+
|
1497 |
+
# 正向传播解码器以获取Grad-CAM
|
1498 |
+
decoder_outputs = self.decoder(
|
1499 |
+
input_ids=question_input_ids,
|
1500 |
+
attention_mask=question_attention_mask,
|
1501 |
+
encoder_hidden_states=document_embeds,
|
1502 |
+
encoder_attention_mask=document_attention_mask,
|
1503 |
+
use_cache=False,
|
1504 |
+
return_dict=True,
|
1505 |
+
)
|
1506 |
+
|
1507 |
+
# get grads
|
1508 |
+
soft_prompt_output = decoder_outputs.last_hidden_state * question_attention_mask.unsqueeze(-1)
|
1509 |
+
ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=1)).view(-1)
|
1510 |
+
loss = ranking_logits.sum()
|
1511 |
+
self.zero_grad()
|
1512 |
+
loss.backward()
|
1513 |
+
|
1514 |
+
# compute grad cam
|
1515 |
+
with torch.no_grad():
|
1516 |
+
# grads and cams [bsz, num_head, ques_len, doc_len]
|
1517 |
+
grads = attention_layer.get_attn_gradients()
|
1518 |
+
cams = attention_layer.get_attention_map()
|
1519 |
+
gradcams = cams * grads
|
1520 |
+
# average over heads -> [bsz, ques_len, doc_len]
|
1521 |
+
gradcams = gradcams.mean(dim=1)
|
1522 |
+
# apply relu
|
1523 |
+
gradcams = gradcams.relu()
|
1524 |
+
# apply question attention mask
|
1525 |
+
gradcams = gradcams * question_attention_mask.unsqueeze(-1)
|
1526 |
+
if reduction == "sum":
|
1527 |
+
gradcams = gradcams.sum(dim=1)
|
1528 |
+
elif reduction == "mean":
|
1529 |
+
gradcams = gradcams.mean(dim=1)
|
1530 |
+
return gradcams
|
1531 |
+
|
1532 |
+
|
1533 |
+
def compute_lm_grad_cam(
|
1534 |
+
self,
|
1535 |
+
document_input_ids,
|
1536 |
+
document_attention_mask,
|
1537 |
+
question_input_ids,
|
1538 |
+
question_attention_mask,
|
1539 |
+
max_new_tokens=10,
|
1540 |
+
block_num=-1,
|
1541 |
+
reduction="sum"):
|
1542 |
+
# 设置模型为evaluation模式, 开启保存attention map
|
1543 |
+
self.eval()
|
1544 |
+
attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
|
1545 |
+
attention_layer.save_attention = True
|
1546 |
+
|
1547 |
+
# 正向传播以获取特征图
|
1548 |
+
encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
|
1549 |
+
document_embeds = encoder_outputs[0]
|
1550 |
+
|
1551 |
+
# append bos token id to question input ids
|
1552 |
+
question_input_ids = torch.cat(
|
1553 |
+
[question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
|
1554 |
+
question_attention_mask = torch.cat(
|
1555 |
+
[question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
|
1556 |
+
|
1557 |
+
|
1558 |
+
gradcams_output = []
|
1559 |
+
tokens_output = []
|
1560 |
+
for _ in range(max_new_tokens):
|
1561 |
+
# 正向传播解码器以获取Grad-CAM
|
1562 |
+
decoder_outputs = self.decoder(
|
1563 |
+
input_ids=question_input_ids,
|
1564 |
+
attention_mask=question_attention_mask,
|
1565 |
+
encoder_hidden_states=document_embeds,
|
1566 |
+
encoder_attention_mask=document_attention_mask,
|
1567 |
+
use_cache=False,
|
1568 |
+
return_dict=True,
|
1569 |
+
)
|
1570 |
+
# get grads
|
1571 |
+
lm_logits = (decoder_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, -1:, :].contiguous()
|
1572 |
+
max_logits, max_indices = lm_logits.max(dim=-1)
|
1573 |
+
loss = max_logits.sum()
|
1574 |
+
question_input_ids = torch.cat([question_input_ids, max_indices], dim=-1)
|
1575 |
+
question_attention_mask = torch.cat([question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
|
1576 |
+
tokens_output.append(max_indices)
|
1577 |
+
|
1578 |
+
self.zero_grad()
|
1579 |
+
loss.backward(retain_graph=True)
|
1580 |
+
|
1581 |
+
# compute grad cam
|
1582 |
+
with torch.no_grad():
|
1583 |
+
# grads and cams [bsz, num_head, ques_len, doc_len]
|
1584 |
+
grads = attention_layer.get_attn_gradients()
|
1585 |
+
cams = attention_layer.get_attention_map()
|
1586 |
+
gradcams = cams[:, :, -1:, :] * grads[:, :, -1:, :]
|
1587 |
+
# average over heads -> [bsz, 1, doc_len]
|
1588 |
+
gradcams = gradcams.mean(dim=1)
|
1589 |
+
# apply relu
|
1590 |
+
gradcams = gradcams.relu()
|
1591 |
+
gradcams_output.append(gradcams)
|
1592 |
+
# concat to [bsz, max_new_tokens, doc_len]
|
1593 |
+
gradcams_output = torch.cat(gradcams_output, dim=1)
|
1594 |
+
# concat to [bsz, max_new_tokens]
|
1595 |
+
tokens_output = torch.cat(tokens_output, dim=1)
|
1596 |
+
# mask eos token gradcam
|
1597 |
+
gradcams_output = gradcams_output * (tokens_output != self.config.eos_token_id).unsqueeze(-1)
|
1598 |
+
if reduction == "sum":
|
1599 |
+
gradcams_output = gradcams_output.sum(dim=1)
|
1600 |
+
elif reduction == "mean":
|
1601 |
+
gradcams_output = gradcams_output.mean(dim=1)
|
1602 |
+
return tokens_output, gradcams_output
|
1603 |
+
|
1604 |
+
|
1605 |
+
def split_context_by_token_id(
|
1606 |
+
self,
|
1607 |
+
document_input_ids,
|
1608 |
+
gradcams,
|
1609 |
+
split_token_id = 310,
|
1610 |
+
):
|
1611 |
+
bsz = document_input_ids.shape[0]
|
1612 |
+
batch_doc_splits = []
|
1613 |
+
for i in range(bsz):
|
1614 |
+
one_doc = document_input_ids[i]
|
1615 |
+
grad_cam = gradcams[i]
|
1616 |
+
# find the split token index
|
1617 |
+
split_idx = (one_doc == split_token_id).nonzero(as_tuple=True)[0]
|
1618 |
+
# split the document input ids
|
1619 |
+
num_split = len(split_idx)
|
1620 |
+
if num_split > 0:
|
1621 |
+
one_doc_splits = []
|
1622 |
+
activation_splits = []
|
1623 |
+
for i in range(num_split):
|
1624 |
+
if i == 0:
|
1625 |
+
# first split
|
1626 |
+
one_doc_splits.append(one_doc[:split_idx[i]])
|
1627 |
+
activation = grad_cam[:split_idx[i]].mean()
|
1628 |
+
activation_splits.append(activation)
|
1629 |
+
else:
|
1630 |
+
one_doc_splits.append(one_doc[split_idx[i-1]+1:split_idx[i]])
|
1631 |
+
activation = grad_cam[split_idx[i-1]+1:split_idx[i]].mean()
|
1632 |
+
activation_splits.append(activation)
|
1633 |
+
# append the last split
|
1634 |
+
one_doc_splits.append(one_doc[split_idx[-1]+1:])
|
1635 |
+
activation = grad_cam[split_idx[-1]+1:].mean()
|
1636 |
+
activation_splits.append(activation)
|
1637 |
+
else:
|
1638 |
+
# no split token in the document
|
1639 |
+
one_doc_splits = [one_doc]
|
1640 |
+
activation_splits = [grad_cam.mean()]
|
1641 |
+
#
|
1642 |
+
batch_doc_splits.append((one_doc_splits, activation_splits))
|
1643 |
+
return batch_doc_splits
|
1644 |
+
|
1645 |
+
|
1646 |
+
def drop_context_by_activation(
|
1647 |
+
self,
|
1648 |
+
batch_doc_splits,
|
1649 |
+
keep_ratio=0.5,
|
1650 |
+
):
|
1651 |
+
# if keep ratio is zero, raise a error
|
1652 |
+
if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
|
1653 |
+
raise ValueError("keep ratio should not be zero or negative")
|
1654 |
+
batch_doc_splits_drop = []
|
1655 |
+
for one_doc_splits, activation_splits in batch_doc_splits:
|
1656 |
+
sorted_idx = sorted(range(len(activation_splits)), key=lambda k: activation_splits[k], reverse=True)
|
1657 |
+
# at least keep one context
|
1658 |
+
num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
|
1659 |
+
# keep order of document
|
1660 |
+
sorted_idx = sorted(sorted_idx[:num_drop])
|
1661 |
+
one_doc_splits_drop = [one_doc_splits[i] for i in sorted_idx]
|
1662 |
+
batch_doc_splits_drop.append(one_doc_splits_drop)
|
1663 |
+
return batch_doc_splits_drop
|
1664 |
+
|
1665 |
+
def drop_context_by_avg_rank(
|
1666 |
+
self,
|
1667 |
+
batch_doc_splits_ranking,
|
1668 |
+
batch_doc_splits_lm,
|
1669 |
+
keep_ratio=0.5,
|
1670 |
+
):
|
1671 |
+
# if keep ratio is zero, raise a error
|
1672 |
+
if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
|
1673 |
+
raise ValueError("keep ratio should not be zero or negative")
|
1674 |
+
batch_doc_splits_drop = []
|
1675 |
+
bsz = len(batch_doc_splits_ranking)
|
1676 |
+
for i in range(bsz):
|
1677 |
+
one_doc_splits_ranking, activation_splits_ranking = batch_doc_splits_ranking[i]
|
1678 |
+
one_doc_splits_lm, activation_splits_lm = batch_doc_splits_lm[i]
|
1679 |
+
# sort by ranking activation
|
1680 |
+
ranking_sorted_idx = sorted(range(len(activation_splits_ranking)), key=lambda k: activation_splits_ranking[k], reverse=True)
|
1681 |
+
lm_sorted_idx = sorted(range(len(activation_splits_lm)), key=lambda k: activation_splits_lm[k], reverse=True)
|
1682 |
+
# sort by average rank of ranking and lm
|
1683 |
+
avg_rank = [(ranking_sorted_idx.index(i) + lm_sorted_idx.index(i)) / 2 for i in range(len(ranking_sorted_idx))]
|
1684 |
+
sorted_idx = sorted(range(len(avg_rank)), key=lambda k: avg_rank[k])
|
1685 |
+
# at least keep one context
|
1686 |
+
num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
|
1687 |
+
# keep order of document
|
1688 |
+
sorted_idx = sorted(sorted_idx[:num_drop])
|
1689 |
+
one_doc_splits_drop = [one_doc_splits_ranking[i] for i in sorted_idx]
|
1690 |
+
batch_doc_splits_drop.append(one_doc_splits_drop)
|
1691 |
+
return batch_doc_splits_drop
|
1692 |
+
|
1693 |
+
|
1694 |
+
def compress_context_by_activation(
|
1695 |
+
self,
|
1696 |
+
document_input_ids,
|
1697 |
+
gradcams_output,
|
1698 |
+
keep_ratio=0.5,
|
1699 |
+
):
|
1700 |
+
# split context by split token id
|
1701 |
+
batch_doc_splits = self.split_context_by_token_id(document_input_ids, gradcams_output)
|
1702 |
+
# drop context by activation
|
1703 |
+
batch_doc_splits_drop = self.drop_context_by_activation(batch_doc_splits, keep_ratio)
|
1704 |
+
return batch_doc_splits_drop
|
1705 |
+
|
1706 |
+
|
1707 |
+
def compress_context(
|
1708 |
+
self,
|
1709 |
+
document_input_ids,
|
1710 |
+
ranking_gradcams,
|
1711 |
+
lm_gradcams,
|
1712 |
+
keep_ratio=0.5,
|
1713 |
+
):
|
1714 |
+
# split context by split token id
|
1715 |
+
batch_doc_splits_ranking = self.split_context_by_token_id(document_input_ids, ranking_gradcams)
|
1716 |
+
batch_doc_splits_lm = self.split_context_by_token_id(document_input_ids, lm_gradcams)
|
1717 |
+
# drop context by activation
|
1718 |
+
batch_doc_splits_drop = self.drop_context_by_avg_rank(
|
1719 |
+
batch_doc_splits_ranking, batch_doc_splits_lm, keep_ratio)
|
1720 |
+
return batch_doc_splits_drop
|
1721 |
+
|
1722 |
+
|
1723 |
+
|