Update handler.py
Browse files- handler.py +75 -19
handler.py
CHANGED
@@ -9,11 +9,37 @@ import io
|
|
9 |
from PIL import Image
|
10 |
import logging
|
11 |
import requests
|
|
|
12 |
from moviepy.editor import VideoFileClip
|
|
|
13 |
|
14 |
class EndpointHandler():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def __init__(self, path=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
self.model_dir = path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
18 |
self.model_dir, torch_dtype="auto", device_map="auto"
|
19 |
)
|
@@ -21,11 +47,15 @@ class EndpointHandler():
|
|
21 |
|
22 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
23 |
"""
|
24 |
-
data
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
"""
|
30 |
inputs = data.get("inputs")
|
31 |
max_new_tokens = data.get("max_new_tokens", 128)
|
@@ -39,8 +69,8 @@ class EndpointHandler():
|
|
39 |
)
|
40 |
image_inputs, video_inputs = process_vision_info(messages)
|
41 |
|
42 |
-
logging.debug(f"Image inputs: {image_inputs}")
|
43 |
-
logging.debug(f"Video inputs: {video_inputs}")
|
44 |
|
45 |
inputs = self.processor(
|
46 |
text=[text],
|
@@ -58,12 +88,20 @@ class EndpointHandler():
|
|
58 |
]
|
59 |
output_text = self.processor.batch_decode(
|
60 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
61 |
-
)[0]
|
62 |
|
63 |
return {"generated_text": output_text}
|
64 |
|
65 |
def _parse_input(self, input_string):
|
66 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
content = []
|
68 |
parts = input_string.split("<image>")
|
69 |
for i, part in enumerate(parts):
|
@@ -72,9 +110,9 @@ class EndpointHandler():
|
|
72 |
else: # Image/video part
|
73 |
if part.lower().startswith("video:"):
|
74 |
video_path = part.split("video:")[1].strip()
|
75 |
-
print(f"Video path: {video_path}")
|
76 |
video_frames = self._extract_video_frames(video_path)
|
77 |
-
print(f"Number of frames extracted: {len(video_frames) if video_frames else 0}")
|
78 |
if video_frames:
|
79 |
content.append({"type": "video", "video": video_frames, "fps": 1})
|
80 |
else:
|
@@ -84,7 +122,15 @@ class EndpointHandler():
|
|
84 |
return content
|
85 |
|
86 |
def _load_image(self, image_data):
|
87 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
if image_data.startswith("http"):
|
89 |
try:
|
90 |
image = Image.open(requests.get(image_data, stream=True).raw)
|
@@ -105,22 +151,32 @@ class EndpointHandler():
|
|
105 |
return image
|
106 |
|
107 |
def _extract_video_frames(self, video_path, fps=1):
|
108 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
-
print(f"Attempting to load video from: {video_path}")
|
111 |
video = VideoFileClip(video_path)
|
112 |
-
print(f"Video loaded: {video}")
|
113 |
|
114 |
frames = [
|
115 |
Image.fromarray(frame.astype('uint8'), 'RGB')
|
116 |
for frame in video.iter_frames(fps=fps)
|
117 |
]
|
118 |
-
print(f"Number of frames: {len(frames)}")
|
119 |
-
print(f"Frame type: {type(frames[0]) if frames else None}")
|
120 |
-
print(f"Frame size: {frames[0].size if frames else None}")
|
121 |
video.close()
|
122 |
return frames
|
123 |
except Exception as e:
|
124 |
error_message = f"Error extracting video frames: {e}\n{traceback.format_exc()}"
|
125 |
-
logging.error(error_message)
|
126 |
return None
|
|
|
9 |
from PIL import Image
|
10 |
import logging
|
11 |
import requests
|
12 |
+
import subprocess
|
13 |
from moviepy.editor import VideoFileClip
|
14 |
+
import traceback # For formatting exception tracebacks
|
15 |
|
16 |
class EndpointHandler():
|
17 |
+
"""
|
18 |
+
Handler class for the Qwen2-VL-7B-Instruct model on Hugging Face Inference Endpoints.
|
19 |
+
|
20 |
+
This handler processes text, image, and video inputs, leveraging the Qwen2-VL model
|
21 |
+
for multimodal understanding and generation. It includes a runtime workaround to
|
22 |
+
install FFmpeg if it's not available in the environment.
|
23 |
+
"""
|
24 |
+
|
25 |
def __init__(self, path=""):
|
26 |
+
"""
|
27 |
+
Initializes the handler, installs FFmpeg, and loads the Qwen2-VL model.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
path (str, optional): The path to the Qwen2-VL model directory. Defaults to "".
|
31 |
+
"""
|
32 |
self.model_dir = path
|
33 |
+
|
34 |
+
# Install FFmpeg at runtime (this will run once during container initialization)
|
35 |
+
try:
|
36 |
+
subprocess.run(["apt-get", "update"], check=True)
|
37 |
+
subprocess.run(["apt-get", "install", "-y", "ffmpeg"], check=True)
|
38 |
+
logging.info("FFmpeg installed successfully.")
|
39 |
+
except subprocess.CalledProcessError as e:
|
40 |
+
logging.error(f"Error installing FFmpeg: {e}")
|
41 |
+
|
42 |
+
# Load the Qwen2-VL model
|
43 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
44 |
self.model_dir, torch_dtype="auto", device_map="auto"
|
45 |
)
|
|
|
47 |
|
48 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
49 |
"""
|
50 |
+
Processes the input data and returns the Qwen2-VL model's output.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
data (Dict[str, Any]): A dictionary containing the input data.
|
54 |
+
- "inputs" (str): The input text, including image/video references.
|
55 |
+
- "max_new_tokens" (int, optional): Max tokens to generate (default: 128).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
Dict[str, Any]: A dictionary containing the generated text.
|
59 |
"""
|
60 |
inputs = data.get("inputs")
|
61 |
max_new_tokens = data.get("max_new_tokens", 128)
|
|
|
69 |
)
|
70 |
image_inputs, video_inputs = process_vision_info(messages)
|
71 |
|
72 |
+
logging.debug(f"Image inputs: {image_inputs}")
|
73 |
+
logging.debug(f"Video inputs: {video_inputs}")
|
74 |
|
75 |
inputs = self.processor(
|
76 |
text=[text],
|
|
|
88 |
]
|
89 |
output_text = self.processor.batch_decode(
|
90 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
91 |
+
)[0]
|
92 |
|
93 |
return {"generated_text": output_text}
|
94 |
|
95 |
def _parse_input(self, input_string):
|
96 |
+
"""
|
97 |
+
Parses the input string to identify image/video references and text.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
input_string (str): The input string containing text, image, and video references.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
list: A list of dictionaries representing the parsed content.
|
104 |
+
"""
|
105 |
content = []
|
106 |
parts = input_string.split("<image>")
|
107 |
for i, part in enumerate(parts):
|
|
|
110 |
else: # Image/video part
|
111 |
if part.lower().startswith("video:"):
|
112 |
video_path = part.split("video:")[1].strip()
|
113 |
+
print(f"Video path: {video_path}")
|
114 |
video_frames = self._extract_video_frames(video_path)
|
115 |
+
print(f"Number of frames extracted: {len(video_frames) if video_frames else 0}")
|
116 |
if video_frames:
|
117 |
content.append({"type": "video", "video": video_frames, "fps": 1})
|
118 |
else:
|
|
|
122 |
return content
|
123 |
|
124 |
def _load_image(self, image_data):
|
125 |
+
"""
|
126 |
+
Loads an image from a URL or base64 encoded string.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
image_data (str): The image data, either a URL or a base64 encoded string.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
PIL.Image.Image or None: The loaded image, or None if loading fails.
|
133 |
+
"""
|
134 |
if image_data.startswith("http"):
|
135 |
try:
|
136 |
image = Image.open(requests.get(image_data, stream=True).raw)
|
|
|
151 |
return image
|
152 |
|
153 |
def _extract_video_frames(self, video_path, fps=1):
|
154 |
+
"""
|
155 |
+
Extracts frames from a video at the specified FPS using MoviePy.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
video_path (str): The path or URL of the video file.
|
159 |
+
fps (int, optional): The desired frames per second. Defaults to 1.
|
160 |
+
|
161 |
+
Returns:
|
162 |
+
list or None: A list of PIL Images representing the extracted frames,
|
163 |
+
or None if extraction fails.
|
164 |
+
"""
|
165 |
try:
|
166 |
+
print(f"Attempting to load video from: {video_path}")
|
167 |
video = VideoFileClip(video_path)
|
168 |
+
print(f"Video loaded: {video}")
|
169 |
|
170 |
frames = [
|
171 |
Image.fromarray(frame.astype('uint8'), 'RGB')
|
172 |
for frame in video.iter_frames(fps=fps)
|
173 |
]
|
174 |
+
print(f"Number of frames: {len(frames)}")
|
175 |
+
print(f"Frame type: {type(frames[0]) if frames else None}")
|
176 |
+
print(f"Frame size: {frames[0].size if frames else None}")
|
177 |
video.close()
|
178 |
return frames
|
179 |
except Exception as e:
|
180 |
error_message = f"Error extracting video frames: {e}\n{traceback.format_exc()}"
|
181 |
+
logging.error(error_message) # Log the formatted error message
|
182 |
return None
|