Update handler.py
Browse files- handler.py +21 -27
handler.py
CHANGED
@@ -2,37 +2,30 @@ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
import torch
|
4 |
import json
|
5 |
-
import os
|
6 |
-
|
7 |
-
# Set the environment variable to handle memory fragmentation
|
8 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
9 |
|
10 |
class EndpointHandler:
|
11 |
def __init__(self, model_dir):
|
12 |
-
# Load the model
|
13 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
14 |
model_dir,
|
15 |
-
torch_dtype=torch.
|
16 |
-
device_map="auto"
|
17 |
-
low_cpu_mem_usage=True # Minimize CPU memory usage
|
18 |
)
|
19 |
self.processor = AutoProcessor.from_pretrained(model_dir)
|
20 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
# No need to move model to device manually; device_map handles it
|
22 |
self.model.eval()
|
23 |
|
24 |
-
# Enable gradient checkpointing for
|
25 |
self.model.gradient_checkpointing_enable()
|
26 |
|
27 |
def preprocess(self, request_data):
|
28 |
-
# Handle
|
29 |
messages = request_data.get('messages')
|
30 |
if not messages:
|
31 |
raise ValueError("Messages are required")
|
32 |
-
|
33 |
-
# Process vision
|
34 |
image_inputs, video_inputs = process_vision_info(messages)
|
35 |
-
|
36 |
# Prepare text input for the chat model
|
37 |
text = self.processor.apply_chat_template(
|
38 |
messages, tokenize=False, add_generation_prompt=True
|
@@ -47,30 +40,31 @@ class EndpointHandler:
|
|
47 |
return_tensors="pt",
|
48 |
)
|
49 |
|
50 |
-
return inputs.to(self.device)
|
51 |
|
52 |
def inference(self, inputs):
|
53 |
-
# Perform inference
|
54 |
with torch.no_grad():
|
55 |
generated_ids = self.model.generate(
|
56 |
-
**inputs,
|
57 |
-
max_new_tokens=
|
58 |
-
num_beams=
|
59 |
-
|
|
|
60 |
)
|
61 |
|
62 |
-
# Trim the output
|
63 |
generated_ids_trimmed = [
|
64 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
65 |
]
|
66 |
|
67 |
-
# Clear CUDA
|
68 |
torch.cuda.empty_cache()
|
69 |
|
70 |
return generated_ids_trimmed
|
71 |
|
72 |
def postprocess(self, inference_output):
|
73 |
-
# Decode the
|
74 |
output_text = self.processor.batch_decode(
|
75 |
inference_output, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
76 |
)
|
@@ -78,13 +72,13 @@ class EndpointHandler:
|
|
78 |
|
79 |
def __call__(self, request):
|
80 |
try:
|
81 |
-
# Parse the JSON request
|
82 |
request_data = json.loads(request)
|
83 |
-
# Preprocess the input data
|
84 |
inputs = self.preprocess(request_data)
|
85 |
# Perform inference
|
86 |
outputs = self.inference(inputs)
|
87 |
-
# Postprocess the output
|
88 |
result = self.postprocess(outputs)
|
89 |
return json.dumps({"result": result})
|
90 |
except Exception as e:
|
|
|
2 |
from qwen_vl_utils import process_vision_info
|
3 |
import torch
|
4 |
import json
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class EndpointHandler:
|
7 |
def __init__(self, model_dir):
|
8 |
+
# Load the model and processor for Qwen2-VL-7B
|
9 |
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
10 |
model_dir,
|
11 |
+
torch_dtype=torch.float32, # Use float16 for reduced memory usage
|
12 |
+
device_map="auto" # Automatically assign to available GPU(s)
|
|
|
13 |
)
|
14 |
self.processor = AutoProcessor.from_pretrained(model_dir)
|
|
|
|
|
15 |
self.model.eval()
|
16 |
|
17 |
+
# Enable gradient checkpointing for memory savings
|
18 |
self.model.gradient_checkpointing_enable()
|
19 |
|
20 |
def preprocess(self, request_data):
|
21 |
+
# Handle image and video input from the request
|
22 |
messages = request_data.get('messages')
|
23 |
if not messages:
|
24 |
raise ValueError("Messages are required")
|
25 |
+
|
26 |
+
# Process vision info (image or video) from the messages
|
27 |
image_inputs, video_inputs = process_vision_info(messages)
|
28 |
+
|
29 |
# Prepare text input for the chat model
|
30 |
text = self.processor.apply_chat_template(
|
31 |
messages, tokenize=False, add_generation_prompt=True
|
|
|
40 |
return_tensors="pt",
|
41 |
)
|
42 |
|
43 |
+
return inputs.to(self.model.device)
|
44 |
|
45 |
def inference(self, inputs):
|
46 |
+
# Perform inference with the model
|
47 |
with torch.no_grad():
|
48 |
generated_ids = self.model.generate(
|
49 |
+
**inputs,
|
50 |
+
max_new_tokens=256, # Increased token length for richer output
|
51 |
+
num_beams=5, # Increase beam size for better quality
|
52 |
+
early_stopping=True, # Stop when all beams have finished
|
53 |
+
max_batch_size=1 # Keep batch size small to manage memory usage
|
54 |
)
|
55 |
|
56 |
+
# Trim the output (remove input tokens from generated output)
|
57 |
generated_ids_trimmed = [
|
58 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
59 |
]
|
60 |
|
61 |
+
# Clear the CUDA cache after inference to release unused memory
|
62 |
torch.cuda.empty_cache()
|
63 |
|
64 |
return generated_ids_trimmed
|
65 |
|
66 |
def postprocess(self, inference_output):
|
67 |
+
# Decode the generated output from the model
|
68 |
output_text = self.processor.batch_decode(
|
69 |
inference_output, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
70 |
)
|
|
|
72 |
|
73 |
def __call__(self, request):
|
74 |
try:
|
75 |
+
# Parse the JSON request data
|
76 |
request_data = json.loads(request)
|
77 |
+
# Preprocess the input data (text, images, videos)
|
78 |
inputs = self.preprocess(request_data)
|
79 |
# Perform inference
|
80 |
outputs = self.inference(inputs)
|
81 |
+
# Postprocess the output
|
82 |
result = self.postprocess(outputs)
|
83 |
return json.dumps({"result": result})
|
84 |
except Exception as e:
|