from typing import Dict, Any from transformers import Qwen2VLForConditionalGeneration, AutoProcessor from modelscope import snapshot_download from qwen_vl_utils import process_vision_info import torch import os import base64 import io from PIL import Image import logging import requests import subprocess from moviepy.editor import VideoFileClip import traceback # For formatting exception tracebacks class EndpointHandler(): """ Handler class for the Qwen2-VL-7B-Instruct model on Hugging Face Inference Endpoints. This handler processes text, image, and video inputs, leveraging the Qwen2-VL model for multimodal understanding and generation. It includes a runtime workaround to install FFmpeg if it's not available in the environment. """ def __init__(self, path=""): """ Initializes the handler, installs FFmpeg, and loads the Qwen2-VL model. Args: path (str, optional): The path to the Qwen2-VL model directory. Defaults to "". """ self.model_dir = path # Install FFmpeg at runtime (this will run once during container initialization) try: subprocess.run(["apt-get", "update"], check=True) subprocess.run(["apt-get", "install", "-y", "ffmpeg"], check=True) logging.info("FFmpeg installed successfully.") except subprocess.CalledProcessError as e: logging.error(f"Error installing FFmpeg: {e}") # Load the Qwen2-VL model self.model = Qwen2VLForConditionalGeneration.from_pretrained( self.model_dir, torch_dtype="auto", device_map="auto" ) self.processor = AutoProcessor.from_pretrained(self.model_dir) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: """ Processes the input data and returns the Qwen2-VL model's output. Args: data (Dict[str, Any]): A dictionary containing the input data. - "inputs" (str): The input text, including image/video references. - "max_new_tokens" (int, optional): Max tokens to generate (default: 128). Returns: Dict[str, Any]: A dictionary containing the generated text. """ inputs = data.get("inputs") max_new_tokens = data.get("max_new_tokens", 128) # Construct the messages list from the input string messages = [{"role": "user", "content": self._parse_input(inputs)}] # Prepare for inference (using qwen_vl_utils) text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) logging.debug(f"Image inputs: {image_inputs}") logging.debug(f"Video inputs: {video_inputs}") inputs = self.processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu") # Inference generated_ids = self.model.generate(**inputs, max_new_tokens=max_new_tokens) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = self.processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] return {"generated_text": output_text} def _parse_input(self, input_string): """ Parses the input string to identify image/video references and text. Args: input_string (str): The input string containing text, image, and video references. Returns: list: A list of dictionaries representing the parsed content. """ content = [] parts = input_string.split("") for i, part in enumerate(parts): if i % 2 == 0: # Text part content.append({"type": "text", "text": part.strip()}) else: # Image/video part if part.lower().startswith("video:"): video_path = part.split("video:")[1].strip() print(f"Video path: {video_path}") video_frames = self._extract_video_frames(video_path) print(f"Number of frames extracted: {len(video_frames) if video_frames else 0}") if video_frames: content.append({"type": "video", "video": video_frames, "fps": 1}) else: image = self._load_image(part.strip()) if image: content.append({"type": "image", "image": image}) return content def _load_image(self, image_data): """ Loads an image from a URL or base64 encoded string. Args: image_data (str): The image data, either a URL or a base64 encoded string. Returns: PIL.Image.Image or None: The loaded image, or None if loading fails. """ if image_data.startswith("http"): try: image = Image.open(requests.get(image_data, stream=True).raw) except Exception as e: logging.error(f"Error loading image from URL: {e}") return None elif image_data.startswith("data:image"): try: image_data = image_data.split(",")[1] image_bytes = base64.b64decode(image_data) image = Image.open(io.BytesIO(image_bytes)) except Exception as e: logging.error(f"Error loading image from base64: {e}") return None else: logging.error("Invalid image data format. Must be URL or base64 encoded.") return None return image def _extract_video_frames(self, video_path, fps=1): """ Extracts frames from a video at the specified FPS using MoviePy. Args: video_path (str): The path or URL of the video file. fps (int, optional): The desired frames per second. Defaults to 1. Returns: list or None: A list of PIL Images representing the extracted frames, or None if extraction fails. """ try: print(f"Attempting to load video from: {video_path}") video = VideoFileClip(video_path) print(f"Video loaded: {video}") frames = [ Image.fromarray(frame.astype('uint8'), 'RGB') for frame in video.iter_frames(fps=fps) ] print(f"Number of frames: {len(frames)}") print(f"Frame type: {type(frames[0]) if frames else None}") print(f"Frame size: {frames[0].size if frames else None}") video.close() return frames except Exception as e: error_message = f"Error extracting video frames: {e}\n{traceback.format_exc()}" logging.error(error_message) # Log the formatted error message return None