LunarLander / config.json
hridayM's picture
First commit for the lunar lander
8a419f2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f908681d3f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f908681d480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f908681d510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f908681d5a0>", "_build": "<function ActorCriticPolicy._build at 0x7f908681d630>", "forward": "<function ActorCriticPolicy.forward at 0x7f908681d6c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f908681d750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f908681d7e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f908681d870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f908681d900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f908681d990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f908681da20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f908680da40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685513162752509887, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZmH71SMys/sTY+Pa55yb7wIgC9I5ZFOwAAAAAAAAAAM45oPdRhjz3dO1+92bFAvj+nSTwQaPg7AAAAAAAAAAAwsIA+gHkEPxSDg741UJa+siwhPX6XDr0AAAAAAAAAAAA0P7z1Mp0/tUyXvDFiDb9wj7i72DVcvQAAAAAAAAAAjWa0PYyvkz9MepY+yZ4Yv+JADD6CFuU9AAAAAAAAAABAkhw+DcdSPrBSXb5agm2+De5Qvc0ycr0AAAAAAAAAAJr9QzxfcWA/xoguOnaq777+2nm9psm3PAAAAAAAAAAATX1BPf7A6D0G6GO+5tJIvojzBL5BdRg8AAAAAAAAAAAzbg09xKqSP8PN/j3vrAa/3aD0PKqc3rsAAAAAAAAAAFpHSb7ssW0+C318Pt0nnb7YTlo8eB3nvAAAAAAAAAAAzQeXvQixl7yKen269fyTvRLTBT6mkGw+AACAPwAAgD+Auma9FoZxP9HYFb2ZMAm/qgi8vRrcCTwAAAAAAAAAAJqNOT6IYB4/q+izvKFV3L7Rmwc+4A6xvQAAAAAAAAAATeWiPRcvRT6e10G9mgyFvjeZkTxjwuu8AAAAAAAAAACa4pm8CvY7u7LswjrKoI88zCvSPK4gdr0AAIA/AACAPx2HUL50lWM/8Mc2vt87576Li6e+hRnSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAm46wMYuWMAWyUTQoBjAF0lEdAnW1vkRzzVnV9lChoBkdAcaf7Wd3B6GgHS+RoCEdAnW4UTURWcXV9lChoBkdAcQoVclgMMWgHTSMBaAhHQJ1vINx2jfx1fZQoaAZHQG8Bvm5lOGloB0vhaAhHQJ1vIPczqKR1fZQoaAZHQG/Vgow22ohoB0vcaAhHQJ1w4sH0K7Z1fZQoaAZHQHL19diUgSxoB0vVaAhHQJ1xAZOzpot1fZQoaAZHQHM6VINEw35oB00EAWgIR0CdcVtWMju8dX2UKGgGR0BxDzyd4FA3aAdL8mgIR0CdcW1xKg7HdX2UKGgGR0Bvt3zQNTcZaAdL8GgIR0CdcghKlHjIdX2UKGgGR0BwmN9srNGFaAdL+GgIR0CdcpFlTWGzdX2UKGgGR0By4rdcjZ+QaAdNPwFoCEdAnXONwNsnA3V9lChoBkdAcIkj0cwQDmgHS/RoCEdAnXOZN47ihnV9lChoBkdAcoavVEuxr2gHS+1oCEdAnXO54jbBXXV9lChoBkdAcxBOxSpBHGgHTSIBaAhHQJ10EYaYNRZ1fZQoaAZHQHKddKIznA9oB0vraAhHQJ10NZyMkyF1fZQoaAZHQG8yxCx/ustoB0vmaAhHQJ11PIHTqjd1fZQoaAZHQHEyvQ0GeMBoB0v7aAhHQJ11ednTRY11fZQoaAZHQG9urBj4HopoB0vOaAhHQJ12FGXokiV1fZQoaAZHQHCc4xHoX9BoB0v3aAhHQJ12bByjpLV1fZQoaAZHQHKPdelbeM1oB0vbaAhHQJ12hnJ1aGJ1fZQoaAZHQHAg1B2OhkBoB0vXaAhHQJ14QuSOinJ1fZQoaAZHQG4i4JVsDW9oB0voaAhHQJ14yZTho/R1fZQoaAZHQHBC2Q0XP7hoB00CAWgIR0Cdekjhky1vdX2UKGgGR0BwWugDifg8aAdL+2gIR0CdetRv3rUtdX2UKGgGR0ByFFGUfPonaAdL1WgIR0Cdex2WY4Q0dX2UKGgGR0Bx/lkSVW0aaAdL2GgIR0Cde2//echDdX2UKGgGR0By78RxtHhCaAdNIQFoCEdAnXuiflIVd3V9lChoBkdAco/eXiR4hWgHTQIBaAhHQJ17v6dlNDd1fZQoaAZHQHEMluejEehoB0voaAhHQJ175Y0VJtl1fZQoaAZHQHByMxO+IuZoB0vxaAhHQJ18tun/DLt1fZQoaAZHQHBu/uogmqpoB0vzaAhHQJ187vb48EF1fZQoaAZHQG/DLT6SDAdoB0vWaAhHQJ19CY+jdpJ1fZQoaAZHQG7EIvi97F9oB0vdaAhHQJ19fLLZBcB1fZQoaAZHQHCtguVX3g1oB0vlaAhHQJ2OaKdhAnl1fZQoaAZHQHAhlWbPQfJoB0vlaAhHQJ2OoJjUd7x1fZQoaAZHQHGWdrwe/6BoB0v+aAhHQJ2PPVYp2EF1fZQoaAZHQHGTFV94NZxoB0vTaAhHQJ2PdR64Uex1fZQoaAZHQHDD4R/ViF1oB0vraAhHQJ2QUwaisXB1fZQoaAZHQG6W7FKkEcNoB0vnaAhHQJ2RJqfvnbJ1fZQoaAZHQHEW6h6By0doB0viaAhHQJ2RyI+GGmF1fZQoaAZHQHMVbi++M61oB0vwaAhHQJ2R8N3GGVR1fZQoaAZHQHM26ZtvXK9oB0v+aAhHQJ2SItcv/R51fZQoaAZHQHELe9FnZkFoB0vsaAhHQJ2SLcfvF3p1fZQoaAZHQHFg6V2Rq49oB0v4aAhHQJ2Sikep4r11fZQoaAZHQG4QeXAuZkVoB0vdaAhHQJ2SuPPszEd1fZQoaAZHQHEXb9MsYl9oB0vjaAhHQJ2TSv5gw491fZQoaAZHQHEygYDTz/ZoB0v9aAhHQJ2Tm36Q/5d1fZQoaAZHQHFjq9wm3ORoB00JAWgIR0Cdk6uvUz9CdX2UKGgGR0BxhaA3DNyHaAdNIwFoCEdAnZO78m8dxXV9lChoBkdAcPo6nR9gGGgHS+poCEdAnZRFuNxVAHV9lChoBkdAb7iCFsYVI2gHTQUBaAhHQJ2UqE/Spit1fZQoaAZHQHGmpRbbDdhoB0v5aAhHQJ2Va38XN1R1fZQoaAZHQHCwDdtVJcxoB00CAWgIR0CdlXV2icoZdX2UKGgGR0By0ayJKraNaAdNDwFoCEdAnZbZi3G4qnV9lChoBkdAcpOomXw9aGgHS9JoCEdAnZbmsq8UVXV9lChoBkdAcpixJd0JW2gHS91oCEdAnZcPSc9W63V9lChoBkdAbvyjqOcUd2gHS/loCEdAnZgcw1zhgnV9lChoBkdAbxyVVxS5y2gHTSEBaAhHQJ2YN+Zw4sF1fZQoaAZHQHKM1dxAB1doB00JAWgIR0CdmJPtUn5SdX2UKGgGR0BzMD2YfGMoaAdNDQFoCEdAnZkNsenyeHV9lChoBkdAcI5aoddVvWgHS/FoCEdAnZkbeZXuE3V9lChoBkdAcLZpCrtE5WgHS+NoCEdAnZkjwYtQK3V9lChoBkdAcT8RceKba2gHTQ0BaAhHQJ2ZPSUkfLd1fZQoaAZHQHKNIGMXJo1oB0vnaAhHQJ2ZSyUs4DN1fZQoaAZHQHCejKoybhFoB0v5aAhHQJ2ZkGC7K7t1fZQoaAZHQHIpipR4yGloB0vnaAhHQJ2Z1H09QoF1fZQoaAZHQHFwqZ+hGpdoB0v8aAhHQJ2an544ZMt1fZQoaAZHQHMwYcrAgxJoB0veaAhHQJ2avYJ3PiV1fZQoaAZHQHEtZr56+nJoB0vraAhHQJ2a9TkyULV1fZQoaAZHQHMLFjAi3XtoB0vjaAhHQJ2cLIp6QeV1fZQoaAZHQG75SowVTJhoB0v1aAhHQJ2clMbm2b51fZQoaAZHQFCQ9OymhuhoB0uuaAhHQJ2c7UvwmVt1fZQoaAZHQHJSZNoJzDJoB00KAWgIR0CdnUaSLZSOdX2UKGgGR0Bti40/GEPEaAdL62gIR0CdnYiYLLIQdX2UKGgGR0BxZJzfaYeDaAdL3WgIR0CdnaBQN0/4dX2UKGgGR0BxpZn6Eal2aAdNGwFoCEdAnZ7bIYFaCHV9lChoBkdAcpdEdvKlpGgHTQ0BaAhHQJ2fqkBS1md1fZQoaAZHQHEo+h4+r2hoB0vQaAhHQJ2fvlkpZwJ1fZQoaAZHQHIHXMY/FBJoB00bAWgIR0Cdn+Pdl/YrdX2UKGgGR0BxnloYekpJaAdNJwFoCEdAnaAo/iYLLXV9lChoBkdAcWKrpqynk2gHTSoBaAhHQJ2gXuv2XcB1fZQoaAZHQHI3LiQ1aW5oB00UAWgIR0CdoII/Z/TcdX2UKGgGR0BxfAmZ3LV4aAdNJQFoCEdAnaCZi7TUiXV9lChoBkdAccQTMqz7dmgHTQEBaAhHQJ2g/qgRK6F1fZQoaAZHQHMbze9Ba9toB0v1aAhHQJ2g/BnBciZ1fZQoaAZHQHOqFDF6zE9oB0vuaAhHQJ2iAuQIUrV1fZQoaAZHQG0cVivxH5JoB0vyaAhHQJ2iecVgx8F1fZQoaAZHQHGOmbsniNtoB0viaAhHQJ2i+5OJtSB1fZQoaAZHQG4YKk2xY7toB0vzaAhHQJ2jgNe+mFd1fZQoaAZHQHJCha1TisJoB00CAWgIR0Cdo4kHD766dX2UKGgGR0ByoocdYGMXaAdNFwFoCEdAnaOzC53C9HV9lChoBkdAbl+52hZha2gHS+BoCEdAnaQsSsbNr3V9lChoBkdAcwM3LV4HHGgHS+VoCEdAnaT9IPK+z3V9lChoBkdAbtNwdbPhQ2gHS+RoCEdAnaUlDneSCHV9lChoBkdAbycuq3mV7mgHS9ZoCEdAnaWKJVKf4HV9lChoBkdAb3Er2g398GgHS+toCEdAnaWa3VkMC3V9lChoBkdAcYNlcQiA2GgHS+RoCEdAnaWkCeVcEHV9lChoBkdAc5mqWTot+WgHTQABaAhHQJ2luYJE6T51fZQoaAZHQGw6pT/ACXBoB0vZaAhHQJ2mDbrTpgV1fZQoaAZHQHEbLJCBwuNoB0vzaAhHQJ2mFyn1nNB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}