<?xml version="1.0"?>
<net name="Model9" version="11">
	<layers>
		<layer id="0" name="latent_sample" type="Parameter" version="opset1">
			<data shape="?,4,?,?" element_type="f32" />
			<output>
				<port id="0" precision="FP32" names="latent_sample">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="1" name="self.post_quant_conv.weight" type="Const" version="opset1">
			<data element_type="u8" shape="4, 4, 1, 1" offset="0" size="16" />
			<output>
				<port id="0" precision="U8">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="2" name="Convert_159874" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="3" name="self.post_quant_conv.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="4, 1, 1, 1" offset="16" size="4" />
			<output>
				<port id="0" precision="U8">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="4" name="Convert_159877" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="5" name="self.post_quant_conv.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="6" name="self.post_quant_conv.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="4, 1, 1, 1" offset="20" size="8" />
			<output>
				<port id="0" precision="FP16">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="7" name="self.post_quant_conv.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="8" name="self.post_quant_conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="9" name="__module.post_quant_conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>4</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="10" name="__module.post_quant_conv/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 4, 1, 1" offset="28" size="16" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="11" name="__module.post_quant_conv/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>4</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="17">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="12" name="self.decoder.conv_in.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 4, 3, 3" offset="44" size="18432" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="13" name="Convert_159852" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="14" name="self.decoder.conv_in.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="18476" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="15" name="Convert_159855" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="16" name="self.decoder.conv_in.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="17" name="self.decoder.conv_in.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="18988" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="18" name="self.decoder.conv_in.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="19" name="self.decoder.conv_in.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="20" name="__module.decoder.conv_in/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>4</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>4</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="21" name="__module.decoder.conv_in/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="20012" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="22" name="__module.decoder.conv_in/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="57,input.1">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="23" name="self.decoder.mid_block.resnets.0.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="22060" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="24" name="self.decoder.mid_block.resnets.0.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="24108" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="25" name="__module.decoder.mid_block.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="74,input.3">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="26" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="75">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="27" name="self.decoder.mid_block.resnets.0.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="26156" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="28" name="Convert_159445" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="29" name="self.decoder.mid_block.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="2385452" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="30" name="Convert_159448" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="31" name="self.decoder.mid_block.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="32" name="self.decoder.mid_block.resnets.0.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="2385964" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="33" name="self.decoder.mid_block.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="34" name="self.decoder.mid_block.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="35" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="36" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="2386988" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="37" name="__module.decoder.mid_block.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="82,input.5">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="38" name="self.decoder.mid_block.resnets.0.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="2389036" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="39" name="self.decoder.mid_block.resnets.0.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="2391084" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.0.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="40" name="__module.decoder.mid_block.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="85,input.7">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="41" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_1" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="86,input.9">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="42" name="self.decoder.mid_block.resnets.0.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="2393132" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="43" name="Convert_159456" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="44" name="self.decoder.mid_block.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="4752428" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="45" name="Convert_159459" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="46" name="self.decoder.mid_block.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="47" name="self.decoder.mid_block.resnets.0.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="4752940" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="48" name="self.decoder.mid_block.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="49" name="self.decoder.mid_block.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="50" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="51" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="4753964" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="52" name="__module.decoder.mid_block.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="94,hidden_states.1">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="53" name="__module.decoder.mid_block.resnets.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="95,96,hidden_states.3">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="54" name="Constant_138704" type="Const" version="opset1">
			<data element_type="i64" shape="3" offset="4756012" size="24" />
			<output>
				<port id="0" precision="I64">
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="55" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="I64">
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="112">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="56" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant" type="Const" version="opset1">
			<data element_type="i32" shape="3" offset="4756036" size="12" />
			<output>
				<port id="0" precision="I32">
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="57" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose" type="Transpose" version="opset1">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="I32">
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="113,hidden_states.5">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="58" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant_1" type="Const" version="opset1">
			<data element_type="i32" shape="3" offset="4756036" size="12" />
			<output>
				<port id="0" precision="I32">
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="59" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_1" type="Transpose" version="opset1">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I32">
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="115,input.11">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="60" name="self.decoder.mid_block.attentions.0.group_norm.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="4756048" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.group_norm.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="61" name="self.decoder.mid_block.attentions.0.group_norm.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="4758096" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.attentions.0.group_norm.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="62" name="__module.decoder.mid_block.attentions.0.group_norm/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="118">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="63" name="self.decoder.mid_block.attentions.0.to_q.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512" offset="4760144" size="262144" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="64" name="Convert_159753" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="65" name="self.decoder.mid_block.attentions.0.to_q.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1" offset="5022288" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="66" name="Convert_159756" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="67" name="self.decoder.mid_block.attentions.0.to_q.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="68" name="self.decoder.mid_block.attentions.0.to_q.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1" offset="5022800" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="69" name="self.decoder.mid_block.attentions.0.to_q.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="70" name="self.decoder.mid_block.attentions.0.to_q.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="71" name="__module.decoder.mid_block.attentions.0.to_q/aten::linear/MatMul" type="MatMul" version="opset1">
			<data transpose_a="true" transpose_b="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="72" name="Constant_138589" type="Const" version="opset1">
			<data element_type="f32" shape="1, 1, 512" offset="5023824" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="73" name="__module.decoder.mid_block.attentions.0.to_q/aten::linear/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="122,query">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="74" name="Constant_138705" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025872" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="75" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_1" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="136">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="76" name="Constant_138454" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025904" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="77" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_3" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="137">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="78" name="self.decoder.mid_block.attentions.0.to_k.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512" offset="5025936" size="262144" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="79" name="Convert_159742" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="80" name="self.decoder.mid_block.attentions.0.to_k.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1" offset="5288080" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="81" name="Convert_159745" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="82" name="self.decoder.mid_block.attentions.0.to_k.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="83" name="self.decoder.mid_block.attentions.0.to_k.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1" offset="5288592" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="84" name="self.decoder.mid_block.attentions.0.to_k.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="85" name="self.decoder.mid_block.attentions.0.to_k.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="86" name="__module.decoder.mid_block.attentions.0.to_k/aten::linear/MatMul" type="MatMul" version="opset1">
			<data transpose_a="true" transpose_b="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="87" name="Constant_138590" type="Const" version="opset1">
			<data element_type="f32" shape="1, 1, 512" offset="5289616" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="88" name="__module.decoder.mid_block.attentions.0.to_k/aten::linear/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="125,key">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="89" name="Constant_138706" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025872" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="90" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_2" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="139">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="91" name="Constant_138458" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025904" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="92" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_4" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="140">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="93" name="self.decoder.mid_block.attentions.0.to_v.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512" offset="5291664" size="262144" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="94" name="Convert_159731" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="95" name="self.decoder.mid_block.attentions.0.to_v.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1" offset="5553808" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="96" name="Convert_159734" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="97" name="self.decoder.mid_block.attentions.0.to_v.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="98" name="self.decoder.mid_block.attentions.0.to_v.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1" offset="5554320" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="99" name="self.decoder.mid_block.attentions.0.to_v.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="100" name="self.decoder.mid_block.attentions.0.to_v.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="101" name="__module.decoder.mid_block.attentions.0.to_v/aten::linear/MatMul" type="MatMul" version="opset1">
			<data transpose_a="true" transpose_b="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="102" name="Constant_138591" type="Const" version="opset1">
			<data element_type="f32" shape="1, 1, 512" offset="5555344" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="103" name="__module.decoder.mid_block.attentions.0.to_v/aten::linear/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="128,value">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="104" name="Constant_138707" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025872" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="105" name="__module.decoder.mid_block.attentions.0/aten::view/Reshape_3" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="142">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="106" name="Constant_138462" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5025904" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="107" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_5" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="143">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="108" name="__module.decoder.mid_block.attentions.0/aten::scaled_dot_product_attention/ScaledDotProductAttention" type="ScaledDotProductAttention" version="opset13">
			<data causal="false" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="144,hidden_states.7">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="109" name="Constant_138464" type="Const" version="opset1">
			<data element_type="i64" shape="4" offset="5557392" size="32" />
			<output>
				<port id="0" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="110" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_6" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="145">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="111" name="Constant_138708" type="Const" version="opset1">
			<data element_type="i64" shape="3" offset="5557424" size="24" />
			<output>
				<port id="0" precision="I64">
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="112" name="__module.decoder.mid_block.attentions.0/aten::reshape/Reshape" type="Reshape" version="opset1">
			<data special_zero="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I64">
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="149,150,hidden_states.9">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="113" name="self.decoder.mid_block.attentions.0.to_out.0.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512" offset="5557448" size="262144" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="114" name="Convert_159764" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="115" name="self.decoder.mid_block.attentions.0.to_out.0.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1" offset="5819592" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="116" name="Convert_159767" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="117" name="self.decoder.mid_block.attentions.0.to_out.0.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="118" name="self.decoder.mid_block.attentions.0.to_out.0.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1" offset="5820104" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="119" name="self.decoder.mid_block.attentions.0.to_out.0.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="120" name="self.decoder.mid_block.attentions.0.to_out.0.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="121" name="__module.decoder.mid_block.attentions.0.to_out.0/aten::linear/MatMul" type="MatMul" version="opset1">
			<data transpose_a="false" transpose_b="true" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="122" name="Constant_138592" type="Const" version="opset1">
			<data element_type="f32" shape="1, 1, 512" offset="5821128" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="123" name="__module.decoder.mid_block.attentions.0.to_out.0/aten::linear/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>1</dim>
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="153,input.13">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="124" name="__module.decoder.mid_block.attentions.0/aten::transpose/Constant_7" type="Const" version="opset1">
			<data element_type="i32" shape="3" offset="4756036" size="12" />
			<output>
				<port id="0" precision="I32">
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="125" name="__module.decoder.mid_block.attentions.0/aten::transpose/Transpose_7" type="Transpose" version="opset1">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>-1</dim>
					<dim>512</dim>
				</port>
				<port id="1" precision="I32">
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="155">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="126" name="__module.decoder.mid_block.attentions.0/aten::size/ShapeOf" type="ShapeOf" version="opset3">
			<data output_type="i64" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</output>
		</layer>
		<layer id="127" name="__module.decoder.mid_block.attentions.0/aten::reshape/Reshape_1" type="Reshape" version="opset1">
			<data special_zero="false" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="I64">
					<dim>4</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="157,hidden_states.13">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="128" name="__module.decoder.mid_block.attentions.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="158,159,hidden_states.15,input.15">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="129" name="self.decoder.mid_block.resnets.1.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="5823176" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="130" name="self.decoder.mid_block.resnets.1.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="5825224" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="131" name="__module.decoder.mid_block.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="168,input.17">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="132" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_2" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="169">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="133" name="self.decoder.mid_block.resnets.1.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="5827272" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="134" name="Convert_159467" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="135" name="self.decoder.mid_block.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="8186568" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="136" name="Convert_159470" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="137" name="self.decoder.mid_block.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="138" name="self.decoder.mid_block.resnets.1.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="8187080" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="139" name="self.decoder.mid_block.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="140" name="self.decoder.mid_block.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="141" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="142" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="8188104" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="143" name="__module.decoder.mid_block.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="176,input.19">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="144" name="self.decoder.mid_block.resnets.1.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="8190152" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="145" name="self.decoder.mid_block.resnets.1.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="8192200" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.mid_block.resnets.1.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="146" name="__module.decoder.mid_block.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="179,input.21">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="147" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_3" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="180,input.23">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="148" name="self.decoder.mid_block.resnets.1.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="8194248" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="149" name="Convert_159478" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="150" name="self.decoder.mid_block.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="10553544" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="151" name="Convert_159481" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="152" name="self.decoder.mid_block.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="153" name="self.decoder.mid_block.resnets.1.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="10554056" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="154" name="self.decoder.mid_block.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="155" name="self.decoder.mid_block.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="156" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="157" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="10555080" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="158" name="__module.decoder.mid_block.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="188,hidden_states.17">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="159" name="__module.decoder.mid_block.resnets.1/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="189,190,191,input.25,sample">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="160" name="self.decoder.up_blocks.0.resnets.0.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="10557128" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="161" name="self.decoder.up_blocks.0.resnets.0.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="10559176" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="162" name="__module.decoder.up_blocks.0.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="207,input.27">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="163" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_4" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="208">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="164" name="self.decoder.up_blocks.0.resnets.0.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="10561224" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="165" name="Convert_159489" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="166" name="self.decoder.up_blocks.0.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="12920520" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="167" name="Convert_159492" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="168" name="self.decoder.up_blocks.0.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="169" name="self.decoder.up_blocks.0.resnets.0.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="12921032" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="170" name="self.decoder.up_blocks.0.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="171" name="self.decoder.up_blocks.0.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="172" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="173" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="12922056" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="174" name="__module.decoder.up_blocks.0.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="215,input.29">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="175" name="self.decoder.up_blocks.0.resnets.0.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="12924104" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="176" name="self.decoder.up_blocks.0.resnets.0.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="12926152" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.0.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="177" name="__module.decoder.up_blocks.0.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="218,input.31">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="178" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_5" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="219,input.33">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="179" name="self.decoder.up_blocks.0.resnets.0.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="12928200" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="180" name="Convert_159500" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="181" name="self.decoder.up_blocks.0.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="15287496" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="182" name="Convert_159503" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="183" name="self.decoder.up_blocks.0.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="184" name="self.decoder.up_blocks.0.resnets.0.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="15288008" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="185" name="self.decoder.up_blocks.0.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="186" name="self.decoder.up_blocks.0.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="187" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="188" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="15289032" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="189" name="__module.decoder.up_blocks.0.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="227,hidden_states.19">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="190" name="__module.decoder.up_blocks.0.resnets.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="228,229,input.35">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="191" name="self.decoder.up_blocks.0.resnets.1.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="15291080" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="192" name="self.decoder.up_blocks.0.resnets.1.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="15293128" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="193" name="__module.decoder.up_blocks.0.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="237,input.37">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="194" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_6" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="238">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="195" name="self.decoder.up_blocks.0.resnets.1.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="15295176" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="196" name="Convert_159511" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="197" name="self.decoder.up_blocks.0.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="17654472" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="198" name="Convert_159514" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="199" name="self.decoder.up_blocks.0.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="200" name="self.decoder.up_blocks.0.resnets.1.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="17654984" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="201" name="self.decoder.up_blocks.0.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="202" name="self.decoder.up_blocks.0.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="203" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="204" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="17656008" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="205" name="__module.decoder.up_blocks.0.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="245,input.39">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="206" name="self.decoder.up_blocks.0.resnets.1.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="17658056" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="207" name="self.decoder.up_blocks.0.resnets.1.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="17660104" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.1.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="208" name="__module.decoder.up_blocks.0.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="248,input.41">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="209" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_7" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="249,input.43">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="210" name="self.decoder.up_blocks.0.resnets.1.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="17662152" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="211" name="Convert_159522" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="212" name="self.decoder.up_blocks.0.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="20021448" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="213" name="Convert_159525" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="214" name="self.decoder.up_blocks.0.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="215" name="self.decoder.up_blocks.0.resnets.1.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="20021960" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="216" name="self.decoder.up_blocks.0.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="217" name="self.decoder.up_blocks.0.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="218" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="219" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="20022984" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="220" name="__module.decoder.up_blocks.0.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="257,hidden_states.21">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="221" name="__module.decoder.up_blocks.0.resnets.1/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="258,259,input.45">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="222" name="self.decoder.up_blocks.0.resnets.2.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="20025032" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="223" name="self.decoder.up_blocks.0.resnets.2.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="20027080" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="224" name="__module.decoder.up_blocks.0.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="267,input.47">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="225" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_8" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="268">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="226" name="self.decoder.up_blocks.0.resnets.2.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="20029128" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="227" name="Convert_159533" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="228" name="self.decoder.up_blocks.0.resnets.2.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="22388424" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="229" name="Convert_159536" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="230" name="self.decoder.up_blocks.0.resnets.2.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="231" name="self.decoder.up_blocks.0.resnets.2.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="22388936" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="232" name="self.decoder.up_blocks.0.resnets.2.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="233" name="self.decoder.up_blocks.0.resnets.2.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="234" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="235" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="22389960" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="236" name="__module.decoder.up_blocks.0.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="275,input.49">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="237" name="self.decoder.up_blocks.0.resnets.2.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="22392008" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="238" name="self.decoder.up_blocks.0.resnets.2.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="22394056" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.0.resnets.2.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="239" name="__module.decoder.up_blocks.0.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="278,input.51">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="240" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_9" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="279,input.53">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="241" name="self.decoder.up_blocks.0.resnets.2.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="22396104" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="242" name="Convert_159544" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="243" name="self.decoder.up_blocks.0.resnets.2.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="24755400" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="244" name="Convert_159547" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="245" name="self.decoder.up_blocks.0.resnets.2.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="246" name="self.decoder.up_blocks.0.resnets.2.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="24755912" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="247" name="self.decoder.up_blocks.0.resnets.2.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="248" name="self.decoder.up_blocks.0.resnets.2.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="249" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="250" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="24756936" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="251" name="__module.decoder.up_blocks.0.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="287,hidden_states.23">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="252" name="__module.decoder.up_blocks.0.resnets.2/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="288,289,hidden_states.25">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="253" name="__module.decoder.up_blocks.0.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
			<data element_type="f32" shape="2" offset="24758984" size="8" />
			<output>
				<port id="0" precision="FP32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="254" name="Constant_132957" type="Const" version="opset1">
			<data element_type="i32" shape="2" offset="24758992" size="8" />
			<output>
				<port id="0" precision="I32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="255" name="__module.decoder.up_blocks.0.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
			<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>2</dim>
				</port>
				<port id="2" precision="I32">
					<dim>2</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="292">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="256" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="24759000" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="257" name="Convert_159555" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="258" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="27118296" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="259" name="Convert_159558" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="260" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="261" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="27118808" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="262" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="263" name="self.decoder.up_blocks.0.upsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="264" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="265" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="27119832" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="266" name="__module.decoder.up_blocks.0.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="299,input.55">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="267" name="self.decoder.up_blocks.1.resnets.0.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="27121880" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="268" name="self.decoder.up_blocks.1.resnets.0.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="27123928" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="269" name="__module.decoder.up_blocks.1.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="315,input.57">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="270" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_10" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="316">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="271" name="self.decoder.up_blocks.1.resnets.0.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="27125976" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="272" name="Convert_159566" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="273" name="self.decoder.up_blocks.1.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="29485272" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="274" name="Convert_159569" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="275" name="self.decoder.up_blocks.1.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="276" name="self.decoder.up_blocks.1.resnets.0.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="29485784" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="277" name="self.decoder.up_blocks.1.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="278" name="self.decoder.up_blocks.1.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="279" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="280" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="29486808" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="281" name="__module.decoder.up_blocks.1.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="323,input.59">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="282" name="self.decoder.up_blocks.1.resnets.0.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="29488856" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="283" name="self.decoder.up_blocks.1.resnets.0.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="29490904" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.0.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="284" name="__module.decoder.up_blocks.1.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="326,input.61">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="285" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_11" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="327,input.63">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="286" name="self.decoder.up_blocks.1.resnets.0.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="29492952" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="287" name="Convert_159577" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="288" name="self.decoder.up_blocks.1.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="31852248" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="289" name="Convert_159580" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="290" name="self.decoder.up_blocks.1.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="291" name="self.decoder.up_blocks.1.resnets.0.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="31852760" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="292" name="self.decoder.up_blocks.1.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="293" name="self.decoder.up_blocks.1.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="294" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="295" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="31853784" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="296" name="__module.decoder.up_blocks.1.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="335,hidden_states.27">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="297" name="__module.decoder.up_blocks.1.resnets.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="336,337,input.65">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="298" name="self.decoder.up_blocks.1.resnets.1.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="31855832" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="299" name="self.decoder.up_blocks.1.resnets.1.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="31857880" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="300" name="__module.decoder.up_blocks.1.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="345,input.67">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="301" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_12" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="346">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="302" name="self.decoder.up_blocks.1.resnets.1.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="31859928" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="303" name="Convert_159588" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="304" name="self.decoder.up_blocks.1.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="34219224" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="305" name="Convert_159591" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="306" name="self.decoder.up_blocks.1.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="307" name="self.decoder.up_blocks.1.resnets.1.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="34219736" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="308" name="self.decoder.up_blocks.1.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="309" name="self.decoder.up_blocks.1.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="310" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="311" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="34220760" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="312" name="__module.decoder.up_blocks.1.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="353,input.69">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="313" name="self.decoder.up_blocks.1.resnets.1.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="34222808" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="314" name="self.decoder.up_blocks.1.resnets.1.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="34224856" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.1.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="315" name="__module.decoder.up_blocks.1.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="356,input.71">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="316" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_13" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="357,input.73">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="317" name="self.decoder.up_blocks.1.resnets.1.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="34226904" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="318" name="Convert_159599" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="319" name="self.decoder.up_blocks.1.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="36586200" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="320" name="Convert_159602" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="321" name="self.decoder.up_blocks.1.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="322" name="self.decoder.up_blocks.1.resnets.1.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="36586712" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="323" name="self.decoder.up_blocks.1.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="324" name="self.decoder.up_blocks.1.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="325" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="326" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="36587736" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="327" name="__module.decoder.up_blocks.1.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="365,hidden_states.29">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="328" name="__module.decoder.up_blocks.1.resnets.1/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="366,367,input.75">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="329" name="self.decoder.up_blocks.1.resnets.2.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="36589784" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="330" name="self.decoder.up_blocks.1.resnets.2.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="36591832" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="331" name="__module.decoder.up_blocks.1.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="375,input.77">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="332" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_14" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="376">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="333" name="self.decoder.up_blocks.1.resnets.2.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="36593880" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="334" name="Convert_159610" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="335" name="self.decoder.up_blocks.1.resnets.2.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="38953176" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="336" name="Convert_159613" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="337" name="self.decoder.up_blocks.1.resnets.2.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="338" name="self.decoder.up_blocks.1.resnets.2.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="38953688" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="339" name="self.decoder.up_blocks.1.resnets.2.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="340" name="self.decoder.up_blocks.1.resnets.2.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="341" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="342" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="38954712" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="343" name="__module.decoder.up_blocks.1.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="383,input.79">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="344" name="self.decoder.up_blocks.1.resnets.2.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="38956760" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm2.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="345" name="self.decoder.up_blocks.1.resnets.2.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="38958808" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.1.resnets.2.norm2.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="346" name="__module.decoder.up_blocks.1.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="386,input.81">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="347" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_15" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="387,input.83">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="348" name="self.decoder.up_blocks.1.resnets.2.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="38960856" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="349" name="Convert_159621" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="350" name="self.decoder.up_blocks.1.resnets.2.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="41320152" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="351" name="Convert_159624" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="352" name="self.decoder.up_blocks.1.resnets.2.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="353" name="self.decoder.up_blocks.1.resnets.2.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="41320664" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="354" name="self.decoder.up_blocks.1.resnets.2.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="355" name="self.decoder.up_blocks.1.resnets.2.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="356" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="357" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="41321688" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="358" name="__module.decoder.up_blocks.1.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="395,hidden_states.31">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="359" name="__module.decoder.up_blocks.1.resnets.2/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="396,397,hidden_states.33">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="360" name="__module.decoder.up_blocks.1.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
			<data element_type="f32" shape="2" offset="24758984" size="8" />
			<output>
				<port id="0" precision="FP32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="361" name="Constant_133394" type="Const" version="opset1">
			<data element_type="i32" shape="2" offset="24758992" size="8" />
			<output>
				<port id="0" precision="I32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="362" name="__module.decoder.up_blocks.1.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
			<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>2</dim>
				</port>
				<port id="2" precision="I32">
					<dim>2</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="400">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="363" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight" type="Const" version="opset1">
			<data element_type="u8" shape="512, 512, 3, 3" offset="41323736" size="2359296" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="364" name="Convert_159632" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="365" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="512, 1, 1, 1" offset="43683032" size="512" />
			<output>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="366" name="Convert_159635" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="367" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="368" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="512, 1, 1, 1" offset="43683544" size="1024" />
			<output>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="369" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="370" name="self.decoder.up_blocks.1.upsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="371" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="372" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 512, 1, 1" offset="43684568" size="2048" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="373" name="__module.decoder.up_blocks.1.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="407,input.85">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="374" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 512, 1, 1" offset="43686616" size="131072" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="375" name="Convert_159830" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="376" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="43817688" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="377" name="Convert_159833" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="378" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="379" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="43817944" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="380" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="381" name="self.decoder.up_blocks.2.resnets.0.conv_shortcut.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="382" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>512</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="383" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="43818456" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="384" name="__module.decoder.up_blocks.2.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="451,input_tensor.1">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="385" name="self.decoder.up_blocks.2.resnets.0.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="43819480" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm1.weight">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="386" name="self.decoder.up_blocks.2.resnets.0.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="512" offset="43821528" size="2048" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm1.bias">
					<dim>512</dim>
				</port>
			</output>
		</layer>
		<layer id="387" name="__module.decoder.up_blocks.2.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>512</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>512</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="424,input.87">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="388" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_16" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="425">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="389" name="self.decoder.up_blocks.2.resnets.0.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 512, 3, 3" offset="43823576" size="1179648" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="390" name="Convert_159643" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="391" name="self.decoder.up_blocks.2.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="45003224" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="392" name="Convert_159646" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="393" name="self.decoder.up_blocks.2.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="394" name="self.decoder.up_blocks.2.resnets.0.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="45003480" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="395" name="self.decoder.up_blocks.2.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="396" name="self.decoder.up_blocks.2.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="397" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>512</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>512</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="398" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="45003992" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="399" name="__module.decoder.up_blocks.2.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="432,input.89">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="400" name="self.decoder.up_blocks.2.resnets.0.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="45005016" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm2.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="401" name="self.decoder.up_blocks.2.resnets.0.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="45006040" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.0.norm2.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="402" name="__module.decoder.up_blocks.2.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="435,input.91">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="403" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_17" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="436,input.93">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="404" name="self.decoder.up_blocks.2.resnets.0.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="45007064" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="405" name="Convert_159654" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="406" name="self.decoder.up_blocks.2.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="45596888" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="407" name="Convert_159657" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="408" name="self.decoder.up_blocks.2.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="409" name="self.decoder.up_blocks.2.resnets.0.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="45597144" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="410" name="self.decoder.up_blocks.2.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="411" name="self.decoder.up_blocks.2.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="412" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="413" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="45597656" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="414" name="__module.decoder.up_blocks.2.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="444,hidden_states.35">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="415" name="__module.decoder.up_blocks.2.resnets.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="452,453,input.95">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="416" name="self.decoder.up_blocks.2.resnets.1.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="45598680" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm1.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="417" name="self.decoder.up_blocks.2.resnets.1.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="45599704" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm1.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="418" name="__module.decoder.up_blocks.2.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="461,input.97">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="419" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_18" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="462">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="420" name="self.decoder.up_blocks.2.resnets.1.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="45600728" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="421" name="Convert_159665" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="422" name="self.decoder.up_blocks.2.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="46190552" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="423" name="Convert_159668" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="424" name="self.decoder.up_blocks.2.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="425" name="self.decoder.up_blocks.2.resnets.1.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="46190808" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="426" name="self.decoder.up_blocks.2.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="427" name="self.decoder.up_blocks.2.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="428" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="429" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="46191320" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="430" name="__module.decoder.up_blocks.2.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="469,input.99">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="431" name="self.decoder.up_blocks.2.resnets.1.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="46192344" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm2.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="432" name="self.decoder.up_blocks.2.resnets.1.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="46193368" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.1.norm2.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="433" name="__module.decoder.up_blocks.2.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="472,input.101">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="434" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_19" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="473,input.103">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="435" name="self.decoder.up_blocks.2.resnets.1.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="46194392" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="436" name="Convert_159676" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="437" name="self.decoder.up_blocks.2.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="46784216" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="438" name="Convert_159679" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="439" name="self.decoder.up_blocks.2.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="440" name="self.decoder.up_blocks.2.resnets.1.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="46784472" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="441" name="self.decoder.up_blocks.2.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="442" name="self.decoder.up_blocks.2.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="443" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="444" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="46784984" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="445" name="__module.decoder.up_blocks.2.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="481,hidden_states.37">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="446" name="__module.decoder.up_blocks.2.resnets.1/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="482,483,input.105">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="447" name="self.decoder.up_blocks.2.resnets.2.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="46786008" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm1.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="448" name="self.decoder.up_blocks.2.resnets.2.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="46787032" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm1.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="449" name="__module.decoder.up_blocks.2.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="491,input.107">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="450" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_20" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="492">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="451" name="self.decoder.up_blocks.2.resnets.2.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="46788056" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="452" name="Convert_159687" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="453" name="self.decoder.up_blocks.2.resnets.2.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="47377880" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="454" name="Convert_159690" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="455" name="self.decoder.up_blocks.2.resnets.2.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="456" name="self.decoder.up_blocks.2.resnets.2.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="47378136" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="457" name="self.decoder.up_blocks.2.resnets.2.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="458" name="self.decoder.up_blocks.2.resnets.2.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="459" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="460" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="47378648" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="461" name="__module.decoder.up_blocks.2.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="499,input.109">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="462" name="self.decoder.up_blocks.2.resnets.2.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="47379672" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm2.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="463" name="self.decoder.up_blocks.2.resnets.2.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="47380696" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.2.resnets.2.norm2.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="464" name="__module.decoder.up_blocks.2.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="502,input.111">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="465" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_21" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="503,input.113">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="466" name="self.decoder.up_blocks.2.resnets.2.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="47381720" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="467" name="Convert_159698" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="468" name="self.decoder.up_blocks.2.resnets.2.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="47971544" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="469" name="Convert_159701" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="470" name="self.decoder.up_blocks.2.resnets.2.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="471" name="self.decoder.up_blocks.2.resnets.2.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="47971800" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="472" name="self.decoder.up_blocks.2.resnets.2.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="473" name="self.decoder.up_blocks.2.resnets.2.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="474" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="475" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="47972312" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="476" name="__module.decoder.up_blocks.2.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="511,hidden_states.39">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="477" name="__module.decoder.up_blocks.2.resnets.2/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="512,513,hidden_states.41">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="478" name="__module.decoder.up_blocks.2.upsamplers.0/aten::upsample_nearest2d/Multiply" type="Const" version="opset1">
			<data element_type="f32" shape="2" offset="24758984" size="8" />
			<output>
				<port id="0" precision="FP32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="479" name="Constant_133875" type="Const" version="opset1">
			<data element_type="i32" shape="2" offset="24758992" size="8" />
			<output>
				<port id="0" precision="I32">
					<dim>2</dim>
				</port>
			</output>
		</layer>
		<layer id="480" name="__module.decoder.up_blocks.2.upsamplers.0/aten::upsample_nearest2d/Interpolate" type="Interpolate" version="opset11">
			<data mode="nearest" shape_calculation_mode="scales" coordinate_transformation_mode="asymmetric" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>2</dim>
				</port>
				<port id="2" precision="I32">
					<dim>2</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="516">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="481" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight" type="Const" version="opset1">
			<data element_type="u8" shape="256, 256, 3, 3" offset="47973336" size="589824" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="482" name="Convert_159709" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="483" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="256, 1, 1, 1" offset="48563160" size="256" />
			<output>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="484" name="Convert_159712" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="485" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="486" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="256, 1, 1, 1" offset="48563416" size="512" />
			<output>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="487" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="488" name="self.decoder.up_blocks.2.upsamplers.0.conv.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="489" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="490" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 256, 1, 1" offset="48563928" size="1024" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="491" name="__module.decoder.up_blocks.2.upsamplers.0.conv/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="523,input.115">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="492" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 256, 1, 1" offset="48564952" size="32768" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="493" name="Convert_159841" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="494" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="48597720" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="495" name="Convert_159844" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="496" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="497" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="48597848" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="498" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="499" name="self.decoder.up_blocks.3.resnets.0.conv_shortcut.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="500" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>256</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="501" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="48598104" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="502" name="__module.decoder.up_blocks.3.resnets.0.conv_shortcut/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="565,input_tensor">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="503" name="self.decoder.up_blocks.3.resnets.0.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="48598616" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm1.weight">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="504" name="self.decoder.up_blocks.3.resnets.0.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="256" offset="48599640" size="1024" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm1.bias">
					<dim>256</dim>
				</port>
			</output>
		</layer>
		<layer id="505" name="__module.decoder.up_blocks.3.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>256</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>256</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="538,input.117">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="506" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_22" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="539">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="507" name="self.decoder.up_blocks.3.resnets.0.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 256, 3, 3" offset="48600664" size="294912" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="508" name="Convert_159720" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="509" name="self.decoder.up_blocks.3.resnets.0.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="48895576" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="510" name="Convert_159723" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="511" name="self.decoder.up_blocks.3.resnets.0.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="512" name="self.decoder.up_blocks.3.resnets.0.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="48895704" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="513" name="self.decoder.up_blocks.3.resnets.0.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="514" name="self.decoder.up_blocks.3.resnets.0.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="515" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>256</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>256</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="516" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="48895960" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="517" name="__module.decoder.up_blocks.3.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="546,input.119">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="518" name="self.decoder.up_blocks.3.resnets.0.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="48896472" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm2.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="519" name="self.decoder.up_blocks.3.resnets.0.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="48896984" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.0.norm2.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="520" name="__module.decoder.up_blocks.3.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="549,input.121">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="521" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_23" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="550,input.123">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="522" name="self.decoder.up_blocks.3.resnets.0.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 128, 3, 3" offset="48897496" size="147456" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="523" name="Convert_159775" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="524" name="self.decoder.up_blocks.3.resnets.0.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="49044952" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="525" name="Convert_159778" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="526" name="self.decoder.up_blocks.3.resnets.0.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="527" name="self.decoder.up_blocks.3.resnets.0.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="49045080" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="528" name="self.decoder.up_blocks.3.resnets.0.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="529" name="self.decoder.up_blocks.3.resnets.0.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="530" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="531" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="49045336" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="532" name="__module.decoder.up_blocks.3.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="558,hidden_states.43">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="533" name="__module.decoder.up_blocks.3.resnets.0/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="566,567,input.125">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="534" name="self.decoder.up_blocks.3.resnets.1.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49045848" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm1.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="535" name="self.decoder.up_blocks.3.resnets.1.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49046360" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm1.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="536" name="__module.decoder.up_blocks.3.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="575,input.127">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="537" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_24" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="576">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="538" name="self.decoder.up_blocks.3.resnets.1.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 128, 3, 3" offset="49046872" size="147456" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="539" name="Convert_159786" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="540" name="self.decoder.up_blocks.3.resnets.1.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="49194328" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="541" name="Convert_159789" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="542" name="self.decoder.up_blocks.3.resnets.1.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="543" name="self.decoder.up_blocks.3.resnets.1.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="49194456" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="544" name="self.decoder.up_blocks.3.resnets.1.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="545" name="self.decoder.up_blocks.3.resnets.1.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="546" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="547" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="49194712" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="548" name="__module.decoder.up_blocks.3.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="583,input.129">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="549" name="self.decoder.up_blocks.3.resnets.1.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49195224" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm2.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="550" name="self.decoder.up_blocks.3.resnets.1.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49195736" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.1.norm2.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="551" name="__module.decoder.up_blocks.3.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="586,input.131">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="552" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_25" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="587,input.133">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="553" name="self.decoder.up_blocks.3.resnets.1.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 128, 3, 3" offset="49196248" size="147456" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="554" name="Convert_159797" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="555" name="self.decoder.up_blocks.3.resnets.1.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="49343704" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="556" name="Convert_159800" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="557" name="self.decoder.up_blocks.3.resnets.1.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="558" name="self.decoder.up_blocks.3.resnets.1.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="49343832" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="559" name="self.decoder.up_blocks.3.resnets.1.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="560" name="self.decoder.up_blocks.3.resnets.1.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="561" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="562" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="49344088" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="563" name="__module.decoder.up_blocks.3.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="595,hidden_states.45">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="564" name="__module.decoder.up_blocks.3.resnets.1/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="596,597,input.135">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="565" name="self.decoder.up_blocks.3.resnets.2.norm1.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49344600" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm1.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="566" name="self.decoder.up_blocks.3.resnets.2.norm1.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49345112" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm1.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="567" name="__module.decoder.up_blocks.3.resnets.2.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="605,input.137">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="568" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_26" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="606">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="569" name="self.decoder.up_blocks.3.resnets.2.conv1.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 128, 3, 3" offset="49345624" size="147456" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="570" name="Convert_159808" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="571" name="self.decoder.up_blocks.3.resnets.2.conv1.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="49493080" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="572" name="Convert_159811" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="573" name="self.decoder.up_blocks.3.resnets.2.conv1.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="574" name="self.decoder.up_blocks.3.resnets.2.conv1.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="49493208" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="575" name="self.decoder.up_blocks.3.resnets.2.conv1.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="576" name="self.decoder.up_blocks.3.resnets.2.conv1.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="577" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="578" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="49493464" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="579" name="__module.decoder.up_blocks.3.resnets.2.conv1/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="613,input.139">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="580" name="self.decoder.up_blocks.3.resnets.2.norm2.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49493976" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm2.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="581" name="self.decoder.up_blocks.3.resnets.2.norm2.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49494488" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.up_blocks.3.resnets.2.norm2.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="582" name="__module.decoder.up_blocks.3.resnets.2.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="616,input.141">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="583" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_27" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="617,input.143">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="584" name="self.decoder.up_blocks.3.resnets.2.conv2.weight" type="Const" version="opset1">
			<data element_type="u8" shape="128, 128, 3, 3" offset="49495000" size="147456" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="585" name="Convert_159819" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="586" name="self.decoder.up_blocks.3.resnets.2.conv2.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="128, 1, 1, 1" offset="49642456" size="128" />
			<output>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="587" name="Convert_159822" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="588" name="self.decoder.up_blocks.3.resnets.2.conv2.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="589" name="self.decoder.up_blocks.3.resnets.2.conv2.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="128, 1, 1, 1" offset="49642584" size="256" />
			<output>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="590" name="self.decoder.up_blocks.3.resnets.2.conv2.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="591" name="self.decoder.up_blocks.3.resnets.2.conv2.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="592" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="593" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 128, 1, 1" offset="49642840" size="512" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="594" name="__module.decoder.up_blocks.3.resnets.2.conv2/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>128</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="625,hidden_states">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="595" name="__module.decoder.up_blocks.3.resnets.2/aten::add/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="626,627,input.145">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="596" name="self.decoder.conv_norm_out.weight" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49643352" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.conv_norm_out.weight">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="597" name="self.decoder.conv_norm_out.bias" type="Const" version="opset1">
			<data element_type="f32" shape="128" offset="49643864" size="512" />
			<output>
				<port id="0" precision="FP32" names="self.decoder.conv_norm_out.bias">
					<dim>128</dim>
				</port>
			</output>
		</layer>
		<layer id="598" name="__module.decoder.conv_norm_out/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
			<data num_groups="32" epsilon="9.9999999747524271e-07" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>128</dim>
				</port>
				<port id="2" precision="FP32">
					<dim>128</dim>
				</port>
			</input>
			<output>
				<port id="3" precision="FP32" names="630,input">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="599" name="__module.decoder.conv_act/aten::silu/Swish" type="Swish" version="opset4">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32" names="631">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="600" name="self.decoder.conv_out.weight" type="Const" version="opset1">
			<data element_type="u8" shape="3, 128, 3, 3" offset="49644376" size="3456" />
			<output>
				<port id="0" precision="U8">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="601" name="Convert_159863" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="602" name="self.decoder.conv_out.weight/zero_point" type="Const" version="opset1">
			<data element_type="u8" shape="3, 1, 1, 1" offset="49647832" size="3" />
			<output>
				<port id="0" precision="U8">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="603" name="Convert_159866" type="Convert" version="opset1">
			<data destination_type="f16" />
			<input>
				<port id="0" precision="U8">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP16">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="604" name="self.decoder.conv_out.weight/zero_point/subtract" type="Subtract" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="605" name="self.decoder.conv_out.weight/scale" type="Const" version="opset1">
			<data element_type="f16" shape="3, 1, 1, 1" offset="49647835" size="6" />
			<output>
				<port id="0" precision="FP16">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="606" name="self.decoder.conv_out.weight/fq_weights_1" type="Multiply" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
				<port id="1" precision="FP16">
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="607" name="self.decoder.conv_out.weight/fq_weights_1/convert" type="Convert" version="opset1">
			<data destination_type="f32" />
			<input>
				<port id="0" precision="FP16">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="1" precision="FP32">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</output>
		</layer>
		<layer id="608" name="__module.decoder.conv_out/aten::_convolution/Convolution" type="Convolution" version="opset1">
			<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>128</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>3</dim>
					<dim>128</dim>
					<dim>3</dim>
					<dim>3</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32">
					<dim>-1</dim>
					<dim>3</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="609" name="__module.decoder.conv_out/aten::_convolution/Reshape" type="Const" version="opset1">
			<data element_type="f32" shape="1, 3, 1, 1" offset="49647841" size="12" />
			<output>
				<port id="0" precision="FP32">
					<dim>1</dim>
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</output>
		</layer>
		<layer id="610" name="__module.decoder.conv_out/aten::_convolution/Add" type="Add" version="opset1">
			<data auto_broadcast="numpy" />
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>3</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
				<port id="1" precision="FP32">
					<dim>1</dim>
					<dim>3</dim>
					<dim>1</dim>
					<dim>1</dim>
				</port>
			</input>
			<output>
				<port id="2" precision="FP32" names="sample">
					<dim>-1</dim>
					<dim>3</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</output>
		</layer>
		<layer id="611" name="Result_134447" type="Result" version="opset1">
			<input>
				<port id="0" precision="FP32">
					<dim>-1</dim>
					<dim>3</dim>
					<dim>-1</dim>
					<dim>-1</dim>
				</port>
			</input>
		</layer>
	</layers>
	<edges>
		<edge from-layer="0" from-port="0" to-layer="9" to-port="0" />
		<edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
		<edge from-layer="2" from-port="1" to-layer="5" to-port="0" />
		<edge from-layer="3" from-port="0" to-layer="4" to-port="0" />
		<edge from-layer="4" from-port="1" to-layer="5" to-port="1" />
		<edge from-layer="5" from-port="2" to-layer="7" to-port="0" />
		<edge from-layer="6" from-port="0" to-layer="7" to-port="1" />
		<edge from-layer="7" from-port="2" to-layer="8" to-port="0" />
		<edge from-layer="8" from-port="1" to-layer="9" to-port="1" />
		<edge from-layer="9" from-port="2" to-layer="11" to-port="0" />
		<edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
		<edge from-layer="11" from-port="2" to-layer="20" to-port="0" />
		<edge from-layer="12" from-port="0" to-layer="13" to-port="0" />
		<edge from-layer="13" from-port="1" to-layer="16" to-port="0" />
		<edge from-layer="14" from-port="0" to-layer="15" to-port="0" />
		<edge from-layer="15" from-port="1" to-layer="16" to-port="1" />
		<edge from-layer="16" from-port="2" to-layer="18" to-port="0" />
		<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
		<edge from-layer="18" from-port="2" to-layer="19" to-port="0" />
		<edge from-layer="19" from-port="1" to-layer="20" to-port="1" />
		<edge from-layer="20" from-port="2" to-layer="22" to-port="0" />
		<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
		<edge from-layer="22" from-port="2" to-layer="25" to-port="0" />
		<edge from-layer="22" from-port="2" to-layer="53" to-port="0" />
		<edge from-layer="23" from-port="0" to-layer="25" to-port="1" />
		<edge from-layer="24" from-port="0" to-layer="25" to-port="2" />
		<edge from-layer="25" from-port="3" to-layer="26" to-port="0" />
		<edge from-layer="26" from-port="1" to-layer="35" to-port="0" />
		<edge from-layer="27" from-port="0" to-layer="28" to-port="0" />
		<edge from-layer="28" from-port="1" to-layer="31" to-port="0" />
		<edge from-layer="29" from-port="0" to-layer="30" to-port="0" />
		<edge from-layer="30" from-port="1" to-layer="31" to-port="1" />
		<edge from-layer="31" from-port="2" to-layer="33" to-port="0" />
		<edge from-layer="32" from-port="0" to-layer="33" to-port="1" />
		<edge from-layer="33" from-port="2" to-layer="34" to-port="0" />
		<edge from-layer="34" from-port="1" to-layer="35" to-port="1" />
		<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
		<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
		<edge from-layer="37" from-port="2" to-layer="40" to-port="0" />
		<edge from-layer="38" from-port="0" to-layer="40" to-port="1" />
		<edge from-layer="39" from-port="0" to-layer="40" to-port="2" />
		<edge from-layer="40" from-port="3" to-layer="41" to-port="0" />
		<edge from-layer="41" from-port="1" to-layer="50" to-port="0" />
		<edge from-layer="42" from-port="0" to-layer="43" to-port="0" />
		<edge from-layer="43" from-port="1" to-layer="46" to-port="0" />
		<edge from-layer="44" from-port="0" to-layer="45" to-port="0" />
		<edge from-layer="45" from-port="1" to-layer="46" to-port="1" />
		<edge from-layer="46" from-port="2" to-layer="48" to-port="0" />
		<edge from-layer="47" from-port="0" to-layer="48" to-port="1" />
		<edge from-layer="48" from-port="2" to-layer="49" to-port="0" />
		<edge from-layer="49" from-port="1" to-layer="50" to-port="1" />
		<edge from-layer="50" from-port="2" to-layer="52" to-port="0" />
		<edge from-layer="51" from-port="0" to-layer="52" to-port="1" />
		<edge from-layer="52" from-port="2" to-layer="53" to-port="1" />
		<edge from-layer="53" from-port="2" to-layer="55" to-port="0" />
		<edge from-layer="53" from-port="2" to-layer="128" to-port="1" />
		<edge from-layer="53" from-port="2" to-layer="126" to-port="0" />
		<edge from-layer="54" from-port="0" to-layer="55" to-port="1" />
		<edge from-layer="55" from-port="2" to-layer="57" to-port="0" />
		<edge from-layer="56" from-port="0" to-layer="57" to-port="1" />
		<edge from-layer="57" from-port="2" to-layer="59" to-port="0" />
		<edge from-layer="58" from-port="0" to-layer="59" to-port="1" />
		<edge from-layer="59" from-port="2" to-layer="62" to-port="0" />
		<edge from-layer="60" from-port="0" to-layer="62" to-port="1" />
		<edge from-layer="61" from-port="0" to-layer="62" to-port="2" />
		<edge from-layer="62" from-port="3" to-layer="101" to-port="0" />
		<edge from-layer="62" from-port="3" to-layer="86" to-port="0" />
		<edge from-layer="62" from-port="3" to-layer="71" to-port="0" />
		<edge from-layer="63" from-port="0" to-layer="64" to-port="0" />
		<edge from-layer="64" from-port="1" to-layer="67" to-port="0" />
		<edge from-layer="65" from-port="0" to-layer="66" to-port="0" />
		<edge from-layer="66" from-port="1" to-layer="67" to-port="1" />
		<edge from-layer="67" from-port="2" to-layer="69" to-port="0" />
		<edge from-layer="68" from-port="0" to-layer="69" to-port="1" />
		<edge from-layer="69" from-port="2" to-layer="70" to-port="0" />
		<edge from-layer="70" from-port="1" to-layer="71" to-port="1" />
		<edge from-layer="71" from-port="2" to-layer="73" to-port="0" />
		<edge from-layer="72" from-port="0" to-layer="73" to-port="1" />
		<edge from-layer="73" from-port="2" to-layer="75" to-port="0" />
		<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
		<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
		<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
		<edge from-layer="77" from-port="2" to-layer="108" to-port="0" />
		<edge from-layer="78" from-port="0" to-layer="79" to-port="0" />
		<edge from-layer="79" from-port="1" to-layer="82" to-port="0" />
		<edge from-layer="80" from-port="0" to-layer="81" to-port="0" />
		<edge from-layer="81" from-port="1" to-layer="82" to-port="1" />
		<edge from-layer="82" from-port="2" to-layer="84" to-port="0" />
		<edge from-layer="83" from-port="0" to-layer="84" to-port="1" />
		<edge from-layer="84" from-port="2" to-layer="85" to-port="0" />
		<edge from-layer="85" from-port="1" to-layer="86" to-port="1" />
		<edge from-layer="86" from-port="2" to-layer="88" to-port="0" />
		<edge from-layer="87" from-port="0" to-layer="88" to-port="1" />
		<edge from-layer="88" from-port="2" to-layer="90" to-port="0" />
		<edge from-layer="89" from-port="0" to-layer="90" to-port="1" />
		<edge from-layer="90" from-port="2" to-layer="92" to-port="0" />
		<edge from-layer="91" from-port="0" to-layer="92" to-port="1" />
		<edge from-layer="92" from-port="2" to-layer="108" to-port="1" />
		<edge from-layer="93" from-port="0" to-layer="94" to-port="0" />
		<edge from-layer="94" from-port="1" to-layer="97" to-port="0" />
		<edge from-layer="95" from-port="0" to-layer="96" to-port="0" />
		<edge from-layer="96" from-port="1" to-layer="97" to-port="1" />
		<edge from-layer="97" from-port="2" to-layer="99" to-port="0" />
		<edge from-layer="98" from-port="0" to-layer="99" to-port="1" />
		<edge from-layer="99" from-port="2" to-layer="100" to-port="0" />
		<edge from-layer="100" from-port="1" to-layer="101" to-port="1" />
		<edge from-layer="101" from-port="2" to-layer="103" to-port="0" />
		<edge from-layer="102" from-port="0" to-layer="103" to-port="1" />
		<edge from-layer="103" from-port="2" to-layer="105" to-port="0" />
		<edge from-layer="104" from-port="0" to-layer="105" to-port="1" />
		<edge from-layer="105" from-port="2" to-layer="107" to-port="0" />
		<edge from-layer="106" from-port="0" to-layer="107" to-port="1" />
		<edge from-layer="107" from-port="2" to-layer="108" to-port="2" />
		<edge from-layer="108" from-port="3" to-layer="110" to-port="0" />
		<edge from-layer="109" from-port="0" to-layer="110" to-port="1" />
		<edge from-layer="110" from-port="2" to-layer="112" to-port="0" />
		<edge from-layer="111" from-port="0" to-layer="112" to-port="1" />
		<edge from-layer="112" from-port="2" to-layer="121" to-port="0" />
		<edge from-layer="113" from-port="0" to-layer="114" to-port="0" />
		<edge from-layer="114" from-port="1" to-layer="117" to-port="0" />
		<edge from-layer="115" from-port="0" to-layer="116" to-port="0" />
		<edge from-layer="116" from-port="1" to-layer="117" to-port="1" />
		<edge from-layer="117" from-port="2" to-layer="119" to-port="0" />
		<edge from-layer="118" from-port="0" to-layer="119" to-port="1" />
		<edge from-layer="119" from-port="2" to-layer="120" to-port="0" />
		<edge from-layer="120" from-port="1" to-layer="121" to-port="1" />
		<edge from-layer="121" from-port="2" to-layer="123" to-port="0" />
		<edge from-layer="122" from-port="0" to-layer="123" to-port="1" />
		<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
		<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
		<edge from-layer="125" from-port="2" to-layer="127" to-port="0" />
		<edge from-layer="126" from-port="1" to-layer="127" to-port="1" />
		<edge from-layer="127" from-port="2" to-layer="128" to-port="0" />
		<edge from-layer="128" from-port="2" to-layer="159" to-port="0" />
		<edge from-layer="128" from-port="2" to-layer="131" to-port="0" />
		<edge from-layer="129" from-port="0" to-layer="131" to-port="1" />
		<edge from-layer="130" from-port="0" to-layer="131" to-port="2" />
		<edge from-layer="131" from-port="3" to-layer="132" to-port="0" />
		<edge from-layer="132" from-port="1" to-layer="141" to-port="0" />
		<edge from-layer="133" from-port="0" to-layer="134" to-port="0" />
		<edge from-layer="134" from-port="1" to-layer="137" to-port="0" />
		<edge from-layer="135" from-port="0" to-layer="136" to-port="0" />
		<edge from-layer="136" from-port="1" to-layer="137" to-port="1" />
		<edge from-layer="137" from-port="2" to-layer="139" to-port="0" />
		<edge from-layer="138" from-port="0" to-layer="139" to-port="1" />
		<edge from-layer="139" from-port="2" to-layer="140" to-port="0" />
		<edge from-layer="140" from-port="1" to-layer="141" to-port="1" />
		<edge from-layer="141" from-port="2" to-layer="143" to-port="0" />
		<edge from-layer="142" from-port="0" to-layer="143" to-port="1" />
		<edge from-layer="143" from-port="2" to-layer="146" to-port="0" />
		<edge from-layer="144" from-port="0" to-layer="146" to-port="1" />
		<edge from-layer="145" from-port="0" to-layer="146" to-port="2" />
		<edge from-layer="146" from-port="3" to-layer="147" to-port="0" />
		<edge from-layer="147" from-port="1" to-layer="156" to-port="0" />
		<edge from-layer="148" from-port="0" to-layer="149" to-port="0" />
		<edge from-layer="149" from-port="1" to-layer="152" to-port="0" />
		<edge from-layer="150" from-port="0" to-layer="151" to-port="0" />
		<edge from-layer="151" from-port="1" to-layer="152" to-port="1" />
		<edge from-layer="152" from-port="2" to-layer="154" to-port="0" />
		<edge from-layer="153" from-port="0" to-layer="154" to-port="1" />
		<edge from-layer="154" from-port="2" to-layer="155" to-port="0" />
		<edge from-layer="155" from-port="1" to-layer="156" to-port="1" />
		<edge from-layer="156" from-port="2" to-layer="158" to-port="0" />
		<edge from-layer="157" from-port="0" to-layer="158" to-port="1" />
		<edge from-layer="158" from-port="2" to-layer="159" to-port="1" />
		<edge from-layer="159" from-port="2" to-layer="190" to-port="0" />
		<edge from-layer="159" from-port="2" to-layer="162" to-port="0" />
		<edge from-layer="160" from-port="0" to-layer="162" to-port="1" />
		<edge from-layer="161" from-port="0" to-layer="162" to-port="2" />
		<edge from-layer="162" from-port="3" to-layer="163" to-port="0" />
		<edge from-layer="163" from-port="1" to-layer="172" to-port="0" />
		<edge from-layer="164" from-port="0" to-layer="165" to-port="0" />
		<edge from-layer="165" from-port="1" to-layer="168" to-port="0" />
		<edge from-layer="166" from-port="0" to-layer="167" to-port="0" />
		<edge from-layer="167" from-port="1" to-layer="168" to-port="1" />
		<edge from-layer="168" from-port="2" to-layer="170" to-port="0" />
		<edge from-layer="169" from-port="0" to-layer="170" to-port="1" />
		<edge from-layer="170" from-port="2" to-layer="171" to-port="0" />
		<edge from-layer="171" from-port="1" to-layer="172" to-port="1" />
		<edge from-layer="172" from-port="2" to-layer="174" to-port="0" />
		<edge from-layer="173" from-port="0" to-layer="174" to-port="1" />
		<edge from-layer="174" from-port="2" to-layer="177" to-port="0" />
		<edge from-layer="175" from-port="0" to-layer="177" to-port="1" />
		<edge from-layer="176" from-port="0" to-layer="177" to-port="2" />
		<edge from-layer="177" from-port="3" to-layer="178" to-port="0" />
		<edge from-layer="178" from-port="1" to-layer="187" to-port="0" />
		<edge from-layer="179" from-port="0" to-layer="180" to-port="0" />
		<edge from-layer="180" from-port="1" to-layer="183" to-port="0" />
		<edge from-layer="181" from-port="0" to-layer="182" to-port="0" />
		<edge from-layer="182" from-port="1" to-layer="183" to-port="1" />
		<edge from-layer="183" from-port="2" to-layer="185" to-port="0" />
		<edge from-layer="184" from-port="0" to-layer="185" to-port="1" />
		<edge from-layer="185" from-port="2" to-layer="186" to-port="0" />
		<edge from-layer="186" from-port="1" to-layer="187" to-port="1" />
		<edge from-layer="187" from-port="2" to-layer="189" to-port="0" />
		<edge from-layer="188" from-port="0" to-layer="189" to-port="1" />
		<edge from-layer="189" from-port="2" to-layer="190" to-port="1" />
		<edge from-layer="190" from-port="2" to-layer="193" to-port="0" />
		<edge from-layer="190" from-port="2" to-layer="221" to-port="0" />
		<edge from-layer="191" from-port="0" to-layer="193" to-port="1" />
		<edge from-layer="192" from-port="0" to-layer="193" to-port="2" />
		<edge from-layer="193" from-port="3" to-layer="194" to-port="0" />
		<edge from-layer="194" from-port="1" to-layer="203" to-port="0" />
		<edge from-layer="195" from-port="0" to-layer="196" to-port="0" />
		<edge from-layer="196" from-port="1" to-layer="199" to-port="0" />
		<edge from-layer="197" from-port="0" to-layer="198" to-port="0" />
		<edge from-layer="198" from-port="1" to-layer="199" to-port="1" />
		<edge from-layer="199" from-port="2" to-layer="201" to-port="0" />
		<edge from-layer="200" from-port="0" to-layer="201" to-port="1" />
		<edge from-layer="201" from-port="2" to-layer="202" to-port="0" />
		<edge from-layer="202" from-port="1" to-layer="203" to-port="1" />
		<edge from-layer="203" from-port="2" to-layer="205" to-port="0" />
		<edge from-layer="204" from-port="0" to-layer="205" to-port="1" />
		<edge from-layer="205" from-port="2" to-layer="208" to-port="0" />
		<edge from-layer="206" from-port="0" to-layer="208" to-port="1" />
		<edge from-layer="207" from-port="0" to-layer="208" to-port="2" />
		<edge from-layer="208" from-port="3" to-layer="209" to-port="0" />
		<edge from-layer="209" from-port="1" to-layer="218" to-port="0" />
		<edge from-layer="210" from-port="0" to-layer="211" to-port="0" />
		<edge from-layer="211" from-port="1" to-layer="214" to-port="0" />
		<edge from-layer="212" from-port="0" to-layer="213" to-port="0" />
		<edge from-layer="213" from-port="1" to-layer="214" to-port="1" />
		<edge from-layer="214" from-port="2" to-layer="216" to-port="0" />
		<edge from-layer="215" from-port="0" to-layer="216" to-port="1" />
		<edge from-layer="216" from-port="2" to-layer="217" to-port="0" />
		<edge from-layer="217" from-port="1" to-layer="218" to-port="1" />
		<edge from-layer="218" from-port="2" to-layer="220" to-port="0" />
		<edge from-layer="219" from-port="0" to-layer="220" to-port="1" />
		<edge from-layer="220" from-port="2" to-layer="221" to-port="1" />
		<edge from-layer="221" from-port="2" to-layer="252" to-port="0" />
		<edge from-layer="221" from-port="2" to-layer="224" to-port="0" />
		<edge from-layer="222" from-port="0" to-layer="224" to-port="1" />
		<edge from-layer="223" from-port="0" to-layer="224" to-port="2" />
		<edge from-layer="224" from-port="3" to-layer="225" to-port="0" />
		<edge from-layer="225" from-port="1" to-layer="234" to-port="0" />
		<edge from-layer="226" from-port="0" to-layer="227" to-port="0" />
		<edge from-layer="227" from-port="1" to-layer="230" to-port="0" />
		<edge from-layer="228" from-port="0" to-layer="229" to-port="0" />
		<edge from-layer="229" from-port="1" to-layer="230" to-port="1" />
		<edge from-layer="230" from-port="2" to-layer="232" to-port="0" />
		<edge from-layer="231" from-port="0" to-layer="232" to-port="1" />
		<edge from-layer="232" from-port="2" to-layer="233" to-port="0" />
		<edge from-layer="233" from-port="1" to-layer="234" to-port="1" />
		<edge from-layer="234" from-port="2" to-layer="236" to-port="0" />
		<edge from-layer="235" from-port="0" to-layer="236" to-port="1" />
		<edge from-layer="236" from-port="2" to-layer="239" to-port="0" />
		<edge from-layer="237" from-port="0" to-layer="239" to-port="1" />
		<edge from-layer="238" from-port="0" to-layer="239" to-port="2" />
		<edge from-layer="239" from-port="3" to-layer="240" to-port="0" />
		<edge from-layer="240" from-port="1" to-layer="249" to-port="0" />
		<edge from-layer="241" from-port="0" to-layer="242" to-port="0" />
		<edge from-layer="242" from-port="1" to-layer="245" to-port="0" />
		<edge from-layer="243" from-port="0" to-layer="244" to-port="0" />
		<edge from-layer="244" from-port="1" to-layer="245" to-port="1" />
		<edge from-layer="245" from-port="2" to-layer="247" to-port="0" />
		<edge from-layer="246" from-port="0" to-layer="247" to-port="1" />
		<edge from-layer="247" from-port="2" to-layer="248" to-port="0" />
		<edge from-layer="248" from-port="1" to-layer="249" to-port="1" />
		<edge from-layer="249" from-port="2" to-layer="251" to-port="0" />
		<edge from-layer="250" from-port="0" to-layer="251" to-port="1" />
		<edge from-layer="251" from-port="2" to-layer="252" to-port="1" />
		<edge from-layer="252" from-port="2" to-layer="255" to-port="0" />
		<edge from-layer="253" from-port="0" to-layer="255" to-port="1" />
		<edge from-layer="254" from-port="0" to-layer="255" to-port="2" />
		<edge from-layer="255" from-port="3" to-layer="264" to-port="0" />
		<edge from-layer="256" from-port="0" to-layer="257" to-port="0" />
		<edge from-layer="257" from-port="1" to-layer="260" to-port="0" />
		<edge from-layer="258" from-port="0" to-layer="259" to-port="0" />
		<edge from-layer="259" from-port="1" to-layer="260" to-port="1" />
		<edge from-layer="260" from-port="2" to-layer="262" to-port="0" />
		<edge from-layer="261" from-port="0" to-layer="262" to-port="1" />
		<edge from-layer="262" from-port="2" to-layer="263" to-port="0" />
		<edge from-layer="263" from-port="1" to-layer="264" to-port="1" />
		<edge from-layer="264" from-port="2" to-layer="266" to-port="0" />
		<edge from-layer="265" from-port="0" to-layer="266" to-port="1" />
		<edge from-layer="266" from-port="2" to-layer="269" to-port="0" />
		<edge from-layer="266" from-port="2" to-layer="297" to-port="0" />
		<edge from-layer="267" from-port="0" to-layer="269" to-port="1" />
		<edge from-layer="268" from-port="0" to-layer="269" to-port="2" />
		<edge from-layer="269" from-port="3" to-layer="270" to-port="0" />
		<edge from-layer="270" from-port="1" to-layer="279" to-port="0" />
		<edge from-layer="271" from-port="0" to-layer="272" to-port="0" />
		<edge from-layer="272" from-port="1" to-layer="275" to-port="0" />
		<edge from-layer="273" from-port="0" to-layer="274" to-port="0" />
		<edge from-layer="274" from-port="1" to-layer="275" to-port="1" />
		<edge from-layer="275" from-port="2" to-layer="277" to-port="0" />
		<edge from-layer="276" from-port="0" to-layer="277" to-port="1" />
		<edge from-layer="277" from-port="2" to-layer="278" to-port="0" />
		<edge from-layer="278" from-port="1" to-layer="279" to-port="1" />
		<edge from-layer="279" from-port="2" to-layer="281" to-port="0" />
		<edge from-layer="280" from-port="0" to-layer="281" to-port="1" />
		<edge from-layer="281" from-port="2" to-layer="284" to-port="0" />
		<edge from-layer="282" from-port="0" to-layer="284" to-port="1" />
		<edge from-layer="283" from-port="0" to-layer="284" to-port="2" />
		<edge from-layer="284" from-port="3" to-layer="285" to-port="0" />
		<edge from-layer="285" from-port="1" to-layer="294" to-port="0" />
		<edge from-layer="286" from-port="0" to-layer="287" to-port="0" />
		<edge from-layer="287" from-port="1" to-layer="290" to-port="0" />
		<edge from-layer="288" from-port="0" to-layer="289" to-port="0" />
		<edge from-layer="289" from-port="1" to-layer="290" to-port="1" />
		<edge from-layer="290" from-port="2" to-layer="292" to-port="0" />
		<edge from-layer="291" from-port="0" to-layer="292" to-port="1" />
		<edge from-layer="292" from-port="2" to-layer="293" to-port="0" />
		<edge from-layer="293" from-port="1" to-layer="294" to-port="1" />
		<edge from-layer="294" from-port="2" to-layer="296" to-port="0" />
		<edge from-layer="295" from-port="0" to-layer="296" to-port="1" />
		<edge from-layer="296" from-port="2" to-layer="297" to-port="1" />
		<edge from-layer="297" from-port="2" to-layer="300" to-port="0" />
		<edge from-layer="297" from-port="2" to-layer="328" to-port="0" />
		<edge from-layer="298" from-port="0" to-layer="300" to-port="1" />
		<edge from-layer="299" from-port="0" to-layer="300" to-port="2" />
		<edge from-layer="300" from-port="3" to-layer="301" to-port="0" />
		<edge from-layer="301" from-port="1" to-layer="310" to-port="0" />
		<edge from-layer="302" from-port="0" to-layer="303" to-port="0" />
		<edge from-layer="303" from-port="1" to-layer="306" to-port="0" />
		<edge from-layer="304" from-port="0" to-layer="305" to-port="0" />
		<edge from-layer="305" from-port="1" to-layer="306" to-port="1" />
		<edge from-layer="306" from-port="2" to-layer="308" to-port="0" />
		<edge from-layer="307" from-port="0" to-layer="308" to-port="1" />
		<edge from-layer="308" from-port="2" to-layer="309" to-port="0" />
		<edge from-layer="309" from-port="1" to-layer="310" to-port="1" />
		<edge from-layer="310" from-port="2" to-layer="312" to-port="0" />
		<edge from-layer="311" from-port="0" to-layer="312" to-port="1" />
		<edge from-layer="312" from-port="2" to-layer="315" to-port="0" />
		<edge from-layer="313" from-port="0" to-layer="315" to-port="1" />
		<edge from-layer="314" from-port="0" to-layer="315" to-port="2" />
		<edge from-layer="315" from-port="3" to-layer="316" to-port="0" />
		<edge from-layer="316" from-port="1" to-layer="325" to-port="0" />
		<edge from-layer="317" from-port="0" to-layer="318" to-port="0" />
		<edge from-layer="318" from-port="1" to-layer="321" to-port="0" />
		<edge from-layer="319" from-port="0" to-layer="320" to-port="0" />
		<edge from-layer="320" from-port="1" to-layer="321" to-port="1" />
		<edge from-layer="321" from-port="2" to-layer="323" to-port="0" />
		<edge from-layer="322" from-port="0" to-layer="323" to-port="1" />
		<edge from-layer="323" from-port="2" to-layer="324" to-port="0" />
		<edge from-layer="324" from-port="1" to-layer="325" to-port="1" />
		<edge from-layer="325" from-port="2" to-layer="327" to-port="0" />
		<edge from-layer="326" from-port="0" to-layer="327" to-port="1" />
		<edge from-layer="327" from-port="2" to-layer="328" to-port="1" />
		<edge from-layer="328" from-port="2" to-layer="359" to-port="0" />
		<edge from-layer="328" from-port="2" to-layer="331" to-port="0" />
		<edge from-layer="329" from-port="0" to-layer="331" to-port="1" />
		<edge from-layer="330" from-port="0" to-layer="331" to-port="2" />
		<edge from-layer="331" from-port="3" to-layer="332" to-port="0" />
		<edge from-layer="332" from-port="1" to-layer="341" to-port="0" />
		<edge from-layer="333" from-port="0" to-layer="334" to-port="0" />
		<edge from-layer="334" from-port="1" to-layer="337" to-port="0" />
		<edge from-layer="335" from-port="0" to-layer="336" to-port="0" />
		<edge from-layer="336" from-port="1" to-layer="337" to-port="1" />
		<edge from-layer="337" from-port="2" to-layer="339" to-port="0" />
		<edge from-layer="338" from-port="0" to-layer="339" to-port="1" />
		<edge from-layer="339" from-port="2" to-layer="340" to-port="0" />
		<edge from-layer="340" from-port="1" to-layer="341" to-port="1" />
		<edge from-layer="341" from-port="2" to-layer="343" to-port="0" />
		<edge from-layer="342" from-port="0" to-layer="343" to-port="1" />
		<edge from-layer="343" from-port="2" to-layer="346" to-port="0" />
		<edge from-layer="344" from-port="0" to-layer="346" to-port="1" />
		<edge from-layer="345" from-port="0" to-layer="346" to-port="2" />
		<edge from-layer="346" from-port="3" to-layer="347" to-port="0" />
		<edge from-layer="347" from-port="1" to-layer="356" to-port="0" />
		<edge from-layer="348" from-port="0" to-layer="349" to-port="0" />
		<edge from-layer="349" from-port="1" to-layer="352" to-port="0" />
		<edge from-layer="350" from-port="0" to-layer="351" to-port="0" />
		<edge from-layer="351" from-port="1" to-layer="352" to-port="1" />
		<edge from-layer="352" from-port="2" to-layer="354" to-port="0" />
		<edge from-layer="353" from-port="0" to-layer="354" to-port="1" />
		<edge from-layer="354" from-port="2" to-layer="355" to-port="0" />
		<edge from-layer="355" from-port="1" to-layer="356" to-port="1" />
		<edge from-layer="356" from-port="2" to-layer="358" to-port="0" />
		<edge from-layer="357" from-port="0" to-layer="358" to-port="1" />
		<edge from-layer="358" from-port="2" to-layer="359" to-port="1" />
		<edge from-layer="359" from-port="2" to-layer="362" to-port="0" />
		<edge from-layer="360" from-port="0" to-layer="362" to-port="1" />
		<edge from-layer="361" from-port="0" to-layer="362" to-port="2" />
		<edge from-layer="362" from-port="3" to-layer="371" to-port="0" />
		<edge from-layer="363" from-port="0" to-layer="364" to-port="0" />
		<edge from-layer="364" from-port="1" to-layer="367" to-port="0" />
		<edge from-layer="365" from-port="0" to-layer="366" to-port="0" />
		<edge from-layer="366" from-port="1" to-layer="367" to-port="1" />
		<edge from-layer="367" from-port="2" to-layer="369" to-port="0" />
		<edge from-layer="368" from-port="0" to-layer="369" to-port="1" />
		<edge from-layer="369" from-port="2" to-layer="370" to-port="0" />
		<edge from-layer="370" from-port="1" to-layer="371" to-port="1" />
		<edge from-layer="371" from-port="2" to-layer="373" to-port="0" />
		<edge from-layer="372" from-port="0" to-layer="373" to-port="1" />
		<edge from-layer="373" from-port="2" to-layer="387" to-port="0" />
		<edge from-layer="373" from-port="2" to-layer="382" to-port="0" />
		<edge from-layer="374" from-port="0" to-layer="375" to-port="0" />
		<edge from-layer="375" from-port="1" to-layer="378" to-port="0" />
		<edge from-layer="376" from-port="0" to-layer="377" to-port="0" />
		<edge from-layer="377" from-port="1" to-layer="378" to-port="1" />
		<edge from-layer="378" from-port="2" to-layer="380" to-port="0" />
		<edge from-layer="379" from-port="0" to-layer="380" to-port="1" />
		<edge from-layer="380" from-port="2" to-layer="381" to-port="0" />
		<edge from-layer="381" from-port="1" to-layer="382" to-port="1" />
		<edge from-layer="382" from-port="2" to-layer="384" to-port="0" />
		<edge from-layer="383" from-port="0" to-layer="384" to-port="1" />
		<edge from-layer="384" from-port="2" to-layer="415" to-port="0" />
		<edge from-layer="385" from-port="0" to-layer="387" to-port="1" />
		<edge from-layer="386" from-port="0" to-layer="387" to-port="2" />
		<edge from-layer="387" from-port="3" to-layer="388" to-port="0" />
		<edge from-layer="388" from-port="1" to-layer="397" to-port="0" />
		<edge from-layer="389" from-port="0" to-layer="390" to-port="0" />
		<edge from-layer="390" from-port="1" to-layer="393" to-port="0" />
		<edge from-layer="391" from-port="0" to-layer="392" to-port="0" />
		<edge from-layer="392" from-port="1" to-layer="393" to-port="1" />
		<edge from-layer="393" from-port="2" to-layer="395" to-port="0" />
		<edge from-layer="394" from-port="0" to-layer="395" to-port="1" />
		<edge from-layer="395" from-port="2" to-layer="396" to-port="0" />
		<edge from-layer="396" from-port="1" to-layer="397" to-port="1" />
		<edge from-layer="397" from-port="2" to-layer="399" to-port="0" />
		<edge from-layer="398" from-port="0" to-layer="399" to-port="1" />
		<edge from-layer="399" from-port="2" to-layer="402" to-port="0" />
		<edge from-layer="400" from-port="0" to-layer="402" to-port="1" />
		<edge from-layer="401" from-port="0" to-layer="402" to-port="2" />
		<edge from-layer="402" from-port="3" to-layer="403" to-port="0" />
		<edge from-layer="403" from-port="1" to-layer="412" to-port="0" />
		<edge from-layer="404" from-port="0" to-layer="405" to-port="0" />
		<edge from-layer="405" from-port="1" to-layer="408" to-port="0" />
		<edge from-layer="406" from-port="0" to-layer="407" to-port="0" />
		<edge from-layer="407" from-port="1" to-layer="408" to-port="1" />
		<edge from-layer="408" from-port="2" to-layer="410" to-port="0" />
		<edge from-layer="409" from-port="0" to-layer="410" to-port="1" />
		<edge from-layer="410" from-port="2" to-layer="411" to-port="0" />
		<edge from-layer="411" from-port="1" to-layer="412" to-port="1" />
		<edge from-layer="412" from-port="2" to-layer="414" to-port="0" />
		<edge from-layer="413" from-port="0" to-layer="414" to-port="1" />
		<edge from-layer="414" from-port="2" to-layer="415" to-port="1" />
		<edge from-layer="415" from-port="2" to-layer="418" to-port="0" />
		<edge from-layer="415" from-port="2" to-layer="446" to-port="0" />
		<edge from-layer="416" from-port="0" to-layer="418" to-port="1" />
		<edge from-layer="417" from-port="0" to-layer="418" to-port="2" />
		<edge from-layer="418" from-port="3" to-layer="419" to-port="0" />
		<edge from-layer="419" from-port="1" to-layer="428" to-port="0" />
		<edge from-layer="420" from-port="0" to-layer="421" to-port="0" />
		<edge from-layer="421" from-port="1" to-layer="424" to-port="0" />
		<edge from-layer="422" from-port="0" to-layer="423" to-port="0" />
		<edge from-layer="423" from-port="1" to-layer="424" to-port="1" />
		<edge from-layer="424" from-port="2" to-layer="426" to-port="0" />
		<edge from-layer="425" from-port="0" to-layer="426" to-port="1" />
		<edge from-layer="426" from-port="2" to-layer="427" to-port="0" />
		<edge from-layer="427" from-port="1" to-layer="428" to-port="1" />
		<edge from-layer="428" from-port="2" to-layer="430" to-port="0" />
		<edge from-layer="429" from-port="0" to-layer="430" to-port="1" />
		<edge from-layer="430" from-port="2" to-layer="433" to-port="0" />
		<edge from-layer="431" from-port="0" to-layer="433" to-port="1" />
		<edge from-layer="432" from-port="0" to-layer="433" to-port="2" />
		<edge from-layer="433" from-port="3" to-layer="434" to-port="0" />
		<edge from-layer="434" from-port="1" to-layer="443" to-port="0" />
		<edge from-layer="435" from-port="0" to-layer="436" to-port="0" />
		<edge from-layer="436" from-port="1" to-layer="439" to-port="0" />
		<edge from-layer="437" from-port="0" to-layer="438" to-port="0" />
		<edge from-layer="438" from-port="1" to-layer="439" to-port="1" />
		<edge from-layer="439" from-port="2" to-layer="441" to-port="0" />
		<edge from-layer="440" from-port="0" to-layer="441" to-port="1" />
		<edge from-layer="441" from-port="2" to-layer="442" to-port="0" />
		<edge from-layer="442" from-port="1" to-layer="443" to-port="1" />
		<edge from-layer="443" from-port="2" to-layer="445" to-port="0" />
		<edge from-layer="444" from-port="0" to-layer="445" to-port="1" />
		<edge from-layer="445" from-port="2" to-layer="446" to-port="1" />
		<edge from-layer="446" from-port="2" to-layer="477" to-port="0" />
		<edge from-layer="446" from-port="2" to-layer="449" to-port="0" />
		<edge from-layer="447" from-port="0" to-layer="449" to-port="1" />
		<edge from-layer="448" from-port="0" to-layer="449" to-port="2" />
		<edge from-layer="449" from-port="3" to-layer="450" to-port="0" />
		<edge from-layer="450" from-port="1" to-layer="459" to-port="0" />
		<edge from-layer="451" from-port="0" to-layer="452" to-port="0" />
		<edge from-layer="452" from-port="1" to-layer="455" to-port="0" />
		<edge from-layer="453" from-port="0" to-layer="454" to-port="0" />
		<edge from-layer="454" from-port="1" to-layer="455" to-port="1" />
		<edge from-layer="455" from-port="2" to-layer="457" to-port="0" />
		<edge from-layer="456" from-port="0" to-layer="457" to-port="1" />
		<edge from-layer="457" from-port="2" to-layer="458" to-port="0" />
		<edge from-layer="458" from-port="1" to-layer="459" to-port="1" />
		<edge from-layer="459" from-port="2" to-layer="461" to-port="0" />
		<edge from-layer="460" from-port="0" to-layer="461" to-port="1" />
		<edge from-layer="461" from-port="2" to-layer="464" to-port="0" />
		<edge from-layer="462" from-port="0" to-layer="464" to-port="1" />
		<edge from-layer="463" from-port="0" to-layer="464" to-port="2" />
		<edge from-layer="464" from-port="3" to-layer="465" to-port="0" />
		<edge from-layer="465" from-port="1" to-layer="474" to-port="0" />
		<edge from-layer="466" from-port="0" to-layer="467" to-port="0" />
		<edge from-layer="467" from-port="1" to-layer="470" to-port="0" />
		<edge from-layer="468" from-port="0" to-layer="469" to-port="0" />
		<edge from-layer="469" from-port="1" to-layer="470" to-port="1" />
		<edge from-layer="470" from-port="2" to-layer="472" to-port="0" />
		<edge from-layer="471" from-port="0" to-layer="472" to-port="1" />
		<edge from-layer="472" from-port="2" to-layer="473" to-port="0" />
		<edge from-layer="473" from-port="1" to-layer="474" to-port="1" />
		<edge from-layer="474" from-port="2" to-layer="476" to-port="0" />
		<edge from-layer="475" from-port="0" to-layer="476" to-port="1" />
		<edge from-layer="476" from-port="2" to-layer="477" to-port="1" />
		<edge from-layer="477" from-port="2" to-layer="480" to-port="0" />
		<edge from-layer="478" from-port="0" to-layer="480" to-port="1" />
		<edge from-layer="479" from-port="0" to-layer="480" to-port="2" />
		<edge from-layer="480" from-port="3" to-layer="489" to-port="0" />
		<edge from-layer="481" from-port="0" to-layer="482" to-port="0" />
		<edge from-layer="482" from-port="1" to-layer="485" to-port="0" />
		<edge from-layer="483" from-port="0" to-layer="484" to-port="0" />
		<edge from-layer="484" from-port="1" to-layer="485" to-port="1" />
		<edge from-layer="485" from-port="2" to-layer="487" to-port="0" />
		<edge from-layer="486" from-port="0" to-layer="487" to-port="1" />
		<edge from-layer="487" from-port="2" to-layer="488" to-port="0" />
		<edge from-layer="488" from-port="1" to-layer="489" to-port="1" />
		<edge from-layer="489" from-port="2" to-layer="491" to-port="0" />
		<edge from-layer="490" from-port="0" to-layer="491" to-port="1" />
		<edge from-layer="491" from-port="2" to-layer="505" to-port="0" />
		<edge from-layer="491" from-port="2" to-layer="500" to-port="0" />
		<edge from-layer="492" from-port="0" to-layer="493" to-port="0" />
		<edge from-layer="493" from-port="1" to-layer="496" to-port="0" />
		<edge from-layer="494" from-port="0" to-layer="495" to-port="0" />
		<edge from-layer="495" from-port="1" to-layer="496" to-port="1" />
		<edge from-layer="496" from-port="2" to-layer="498" to-port="0" />
		<edge from-layer="497" from-port="0" to-layer="498" to-port="1" />
		<edge from-layer="498" from-port="2" to-layer="499" to-port="0" />
		<edge from-layer="499" from-port="1" to-layer="500" to-port="1" />
		<edge from-layer="500" from-port="2" to-layer="502" to-port="0" />
		<edge from-layer="501" from-port="0" to-layer="502" to-port="1" />
		<edge from-layer="502" from-port="2" to-layer="533" to-port="0" />
		<edge from-layer="503" from-port="0" to-layer="505" to-port="1" />
		<edge from-layer="504" from-port="0" to-layer="505" to-port="2" />
		<edge from-layer="505" from-port="3" to-layer="506" to-port="0" />
		<edge from-layer="506" from-port="1" to-layer="515" to-port="0" />
		<edge from-layer="507" from-port="0" to-layer="508" to-port="0" />
		<edge from-layer="508" from-port="1" to-layer="511" to-port="0" />
		<edge from-layer="509" from-port="0" to-layer="510" to-port="0" />
		<edge from-layer="510" from-port="1" to-layer="511" to-port="1" />
		<edge from-layer="511" from-port="2" to-layer="513" to-port="0" />
		<edge from-layer="512" from-port="0" to-layer="513" to-port="1" />
		<edge from-layer="513" from-port="2" to-layer="514" to-port="0" />
		<edge from-layer="514" from-port="1" to-layer="515" to-port="1" />
		<edge from-layer="515" from-port="2" to-layer="517" to-port="0" />
		<edge from-layer="516" from-port="0" to-layer="517" to-port="1" />
		<edge from-layer="517" from-port="2" to-layer="520" to-port="0" />
		<edge from-layer="518" from-port="0" to-layer="520" to-port="1" />
		<edge from-layer="519" from-port="0" to-layer="520" to-port="2" />
		<edge from-layer="520" from-port="3" to-layer="521" to-port="0" />
		<edge from-layer="521" from-port="1" to-layer="530" to-port="0" />
		<edge from-layer="522" from-port="0" to-layer="523" to-port="0" />
		<edge from-layer="523" from-port="1" to-layer="526" to-port="0" />
		<edge from-layer="524" from-port="0" to-layer="525" to-port="0" />
		<edge from-layer="525" from-port="1" to-layer="526" to-port="1" />
		<edge from-layer="526" from-port="2" to-layer="528" to-port="0" />
		<edge from-layer="527" from-port="0" to-layer="528" to-port="1" />
		<edge from-layer="528" from-port="2" to-layer="529" to-port="0" />
		<edge from-layer="529" from-port="1" to-layer="530" to-port="1" />
		<edge from-layer="530" from-port="2" to-layer="532" to-port="0" />
		<edge from-layer="531" from-port="0" to-layer="532" to-port="1" />
		<edge from-layer="532" from-port="2" to-layer="533" to-port="1" />
		<edge from-layer="533" from-port="2" to-layer="536" to-port="0" />
		<edge from-layer="533" from-port="2" to-layer="564" to-port="0" />
		<edge from-layer="534" from-port="0" to-layer="536" to-port="1" />
		<edge from-layer="535" from-port="0" to-layer="536" to-port="2" />
		<edge from-layer="536" from-port="3" to-layer="537" to-port="0" />
		<edge from-layer="537" from-port="1" to-layer="546" to-port="0" />
		<edge from-layer="538" from-port="0" to-layer="539" to-port="0" />
		<edge from-layer="539" from-port="1" to-layer="542" to-port="0" />
		<edge from-layer="540" from-port="0" to-layer="541" to-port="0" />
		<edge from-layer="541" from-port="1" to-layer="542" to-port="1" />
		<edge from-layer="542" from-port="2" to-layer="544" to-port="0" />
		<edge from-layer="543" from-port="0" to-layer="544" to-port="1" />
		<edge from-layer="544" from-port="2" to-layer="545" to-port="0" />
		<edge from-layer="545" from-port="1" to-layer="546" to-port="1" />
		<edge from-layer="546" from-port="2" to-layer="548" to-port="0" />
		<edge from-layer="547" from-port="0" to-layer="548" to-port="1" />
		<edge from-layer="548" from-port="2" to-layer="551" to-port="0" />
		<edge from-layer="549" from-port="0" to-layer="551" to-port="1" />
		<edge from-layer="550" from-port="0" to-layer="551" to-port="2" />
		<edge from-layer="551" from-port="3" to-layer="552" to-port="0" />
		<edge from-layer="552" from-port="1" to-layer="561" to-port="0" />
		<edge from-layer="553" from-port="0" to-layer="554" to-port="0" />
		<edge from-layer="554" from-port="1" to-layer="557" to-port="0" />
		<edge from-layer="555" from-port="0" to-layer="556" to-port="0" />
		<edge from-layer="556" from-port="1" to-layer="557" to-port="1" />
		<edge from-layer="557" from-port="2" to-layer="559" to-port="0" />
		<edge from-layer="558" from-port="0" to-layer="559" to-port="1" />
		<edge from-layer="559" from-port="2" to-layer="560" to-port="0" />
		<edge from-layer="560" from-port="1" to-layer="561" to-port="1" />
		<edge from-layer="561" from-port="2" to-layer="563" to-port="0" />
		<edge from-layer="562" from-port="0" to-layer="563" to-port="1" />
		<edge from-layer="563" from-port="2" to-layer="564" to-port="1" />
		<edge from-layer="564" from-port="2" to-layer="595" to-port="0" />
		<edge from-layer="564" from-port="2" to-layer="567" to-port="0" />
		<edge from-layer="565" from-port="0" to-layer="567" to-port="1" />
		<edge from-layer="566" from-port="0" to-layer="567" to-port="2" />
		<edge from-layer="567" from-port="3" to-layer="568" to-port="0" />
		<edge from-layer="568" from-port="1" to-layer="577" to-port="0" />
		<edge from-layer="569" from-port="0" to-layer="570" to-port="0" />
		<edge from-layer="570" from-port="1" to-layer="573" to-port="0" />
		<edge from-layer="571" from-port="0" to-layer="572" to-port="0" />
		<edge from-layer="572" from-port="1" to-layer="573" to-port="1" />
		<edge from-layer="573" from-port="2" to-layer="575" to-port="0" />
		<edge from-layer="574" from-port="0" to-layer="575" to-port="1" />
		<edge from-layer="575" from-port="2" to-layer="576" to-port="0" />
		<edge from-layer="576" from-port="1" to-layer="577" to-port="1" />
		<edge from-layer="577" from-port="2" to-layer="579" to-port="0" />
		<edge from-layer="578" from-port="0" to-layer="579" to-port="1" />
		<edge from-layer="579" from-port="2" to-layer="582" to-port="0" />
		<edge from-layer="580" from-port="0" to-layer="582" to-port="1" />
		<edge from-layer="581" from-port="0" to-layer="582" to-port="2" />
		<edge from-layer="582" from-port="3" to-layer="583" to-port="0" />
		<edge from-layer="583" from-port="1" to-layer="592" to-port="0" />
		<edge from-layer="584" from-port="0" to-layer="585" to-port="0" />
		<edge from-layer="585" from-port="1" to-layer="588" to-port="0" />
		<edge from-layer="586" from-port="0" to-layer="587" to-port="0" />
		<edge from-layer="587" from-port="1" to-layer="588" to-port="1" />
		<edge from-layer="588" from-port="2" to-layer="590" to-port="0" />
		<edge from-layer="589" from-port="0" to-layer="590" to-port="1" />
		<edge from-layer="590" from-port="2" to-layer="591" to-port="0" />
		<edge from-layer="591" from-port="1" to-layer="592" to-port="1" />
		<edge from-layer="592" from-port="2" to-layer="594" to-port="0" />
		<edge from-layer="593" from-port="0" to-layer="594" to-port="1" />
		<edge from-layer="594" from-port="2" to-layer="595" to-port="1" />
		<edge from-layer="595" from-port="2" to-layer="598" to-port="0" />
		<edge from-layer="596" from-port="0" to-layer="598" to-port="1" />
		<edge from-layer="597" from-port="0" to-layer="598" to-port="2" />
		<edge from-layer="598" from-port="3" to-layer="599" to-port="0" />
		<edge from-layer="599" from-port="1" to-layer="608" to-port="0" />
		<edge from-layer="600" from-port="0" to-layer="601" to-port="0" />
		<edge from-layer="601" from-port="1" to-layer="604" to-port="0" />
		<edge from-layer="602" from-port="0" to-layer="603" to-port="0" />
		<edge from-layer="603" from-port="1" to-layer="604" to-port="1" />
		<edge from-layer="604" from-port="2" to-layer="606" to-port="0" />
		<edge from-layer="605" from-port="0" to-layer="606" to-port="1" />
		<edge from-layer="606" from-port="2" to-layer="607" to-port="0" />
		<edge from-layer="607" from-port="1" to-layer="608" to-port="1" />
		<edge from-layer="608" from-port="2" to-layer="610" to-port="0" />
		<edge from-layer="609" from-port="0" to-layer="610" to-port="1" />
		<edge from-layer="610" from-port="2" to-layer="611" to-port="0" />
	</edges>
	<rt_info>
		<Runtime_version value="2024.6.0-17404-4c0f47d2335-releases/2024/6" />
		<conversion_parameters>
			<framework value="pytorch" />
			<is_python_object value="True" />
		</conversion_parameters>
		<nncf>
			<friendly_names_were_updated value="True" />
			<weight_compression>
				<advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
				<all_layers value="False" />
				<awq value="False" />
				<backup_mode value="int8_asym" />
				<gptq value="False" />
				<group_size value="-1" />
				<ignored_scope value="[]" />
				<lora_correction value="False" />
				<mode value="int8_asym" />
				<ratio value="1.0" />
				<scale_estimation value="False" />
				<sensitivity_metric value="weight_quantization_error" />
			</weight_compression>
		</nncf>
		<optimum>
			<diffusers_version value="0.29.1" />
			<optimum_intel_version value="1.22.0.dev0+48e72ef" />
			<optimum_version value="1.24.0.dev0" />
			<pytorch_version value="2.5.1" />
			<transformers_version value="4.42.4" />
		</optimum>
		<runtime_options>
			<ACTIVATIONS_SCALE_FACTOR value="8.0" />
		</runtime_options>
	</rt_info>
</net>