File size: 4,227 Bytes
41b8782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
tags:
- stable-diffusion
- stable-diffusion-diffusers
- diffusers-training
- text-to-image
- diffusers
- dora
- template:sd-lora
widget:
- text: 'living room - kitchen in the style of <s0><s1> with a open floor plan, featuring a coffee table, a couch, a chandelier, and a set of dining table'
output:
url:
"image_0.png"
- text: 'living room - kitchen in the style of <s0><s1> with a open floor plan, featuring a coffee table, a couch, a chandelier, and a set of dining table'
output:
url:
"image_1.png"
- text: 'living room - kitchen in the style of <s0><s1> with a open floor plan, featuring a coffee table, a couch, a chandelier, and a set of dining table'
output:
url:
"image_2.png"
- text: 'living room - kitchen in the style of <s0><s1> with a open floor plan, featuring a coffee table, a couch, a chandelier, and a set of dining table'
output:
url:
"image_3.png"
base_model: runwayml/stable-diffusion-v1-5
instance_prompt: living room - kitchen in style of <s0><s1> with an open floor plan
license: openrail++
---
# SD1.5 LoRA DreamBooth - htuannn/living-room-sd-1-5-16
<Gallery />
## Model description
### These are htuannn/living-room-sd-1-5-16 LoRA adaption weights for runwayml/stable-diffusion-v1-5.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`living-room-sd-1-5-16.safetensors` here 💾](/htuannn/living-room-sd-1-5-16/blob/main/living-room-sd-1-5-16.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:living-room-sd-1-5-16:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`living-room-sd-1-5-16_emb.safetensors` here 💾](/htuannn/living-room-sd-1-5-16/blob/main/living-room-sd-1-5-16_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `living-room-sd-1-5-16_emb` to your prompt. For example, `living room - kitchen in style of living-room-sd-1-5-16_emb with an open floor plan`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('htuannn/living-room-sd-1-5-16', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='htuannn/living-room-sd-1-5-16', filename='living-room-sd-1-5-16_emb.safetensors', repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
image = pipeline('living room - kitchen in the style of <s0><s1> with a open floor plan, featuring a coffee table, a couch, a chandelier, and a set of dining table').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/htuannn/living-room-sd-1-5-16/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: None.
|