File size: 2,544 Bytes
59106a5 c6d76a8 59106a5 c6d76a8 7a5ed24 59106a5 39256e5 59106a5 39256e5 c6d76a8 39256e5 7a5ed24 c6d76a8 59106a5 175da98 59106a5 175da98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-ucf101-subset-hand
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ucf101-subset-hand
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5545
- Accuracy: 0.9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1600
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:--------:|:----:|:---------------:|:--------:|
| 1.6621 | 11.0006 | 100 | 1.6555 | 0.2 |
| 1.6996 | 22.0012 | 200 | 1.5660 | 0.4167 |
| 0.886 | 33.0019 | 300 | 1.4698 | 0.4167 |
| 0.6728 | 44.0025 | 400 | 0.7168 | 0.7833 |
| 0.1659 | 55.0031 | 500 | 1.3954 | 0.6667 |
| 0.1471 | 66.0037 | 600 | 1.7320 | 0.6 |
| 0.0085 | 77.0044 | 700 | 1.4034 | 0.7333 |
| 0.0613 | 88.005 | 800 | 1.1479 | 0.7 |
| 0.1256 | 99.0056 | 900 | 1.3657 | 0.7 |
| 0.194 | 111.0006 | 1000 | 1.0879 | 0.7 |
| 0.1336 | 122.0012 | 1100 | 0.9304 | 0.8 |
| 0.0605 | 133.0019 | 1200 | 0.6773 | 0.85 |
| 0.0025 | 144.0025 | 1300 | 0.7631 | 0.7833 |
| 0.0016 | 155.0031 | 1400 | 0.4629 | 0.9167 |
| 0.1698 | 166.0037 | 1500 | 0.5422 | 0.9167 |
| 0.0011 | 177.0044 | 1600 | 0.5545 | 0.9 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.4.1+cu118
- Datasets 3.0.0
- Tokenizers 0.20.0
|