huam commited on
Commit
61696ca
1 Parent(s): bfe7722

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Taxi-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Taxi-v3
16
+ type: Taxi-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -200.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **Taxi-v3**
25
+ This is a trained model of a **DQN** agent playing **Taxi-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f1292256e50>", "_build": "<function DQNPolicy._build at 0x7f1292256ee0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f1292256f70>", "forward": "<function DQNPolicy.forward at 0x7f129225f040>", "_predict": "<function DQNPolicy._predict at 0x7f129225f0d0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f129225f160>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f129225f1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f129225e280>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==", "n": 500, "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA+tDKR6jy5TrjLgp6///q9OtS3uloumNRSE4O1WS/uo+UlXQMrtGyPPPvl/Y+pgJosBXQgQJQfHYtPI/RUV2NGvTK0Lq1OdWCqKpeN6EWwafzrNU8QFVCTM498bOln8BiSlkQFmWB2PaSdGoXXdh/9ehWrrWdvE6hQPqeNyBQ377FJv4rwFmTLXYzmXfXcHiI9equekJP9yUPJ+ast/VDmKG+kv6Ox3RzqToYXM4x8u0hw9T2aCpw3tznfsrnskJp/QxAuq2agMr4GaPkAe7M8v956+PqOMtEqMdkFpBoAPc4VPoOhmdxjpT2diSLD4dXPdb0koKyDfTiHxs+XZXtHQkvQaKe/082z5k30woW7ffpaB5ls499yyXEwQNSKZLr1uIL5Fo7LVDcQgSck+ZpAnAXIaazaM6rPg0+ghq7s5pOhC3VIIDRIa+0ogmFdc8Y1iMvAZzsSFNLFpOW4HpdIlN2alFyFfoZyMe/VVGCUw0vz2VYEXLLJMQlazD7D9DQ4pUWlYqRhUiIiK1eakHKJlvZsNhDsBpazP/BLWInQUd4+agGa9qEfZfH19XvUpzfi9wgXUNqITk5BqCplUap0OgRMBRCX1JT9oRkgTJphbi3QhzHyitVSMBddIX+PncSZBwsKRbIn+6KZbNPW2wi3v+1vFC6OKf8pf3EEvH7zydDtWKDX+yIKYVKRpPl4gCie/S489DTXyrJ1N/epGHqX4u7lF81BbaTQZSt82axGUqiAtmTMX2bAtAJk/pYEoXR3EGqlhEIKdv1ARfiIoPA5CD+73MsiXkFFWFc3qnWKQZs/V4ZPFEY4pczDrMEnYJXK6HarmFDBQsg7ZySebbs7qMfmv1O2uR4sj7qyMYu+kGIpcfn3uCV47zpnNRltXMniwAYUm9oGDMDI8zg4SzH+gLrxDHty+pYTFt//JpP/kVbqn/Zn3MoKLbl3EJFotxsuYX7sQ3sTVNgDFs4P+t6ihaILyQgOK9gq8nxw/up31ldhmHv6vi1Cjx/m3yuG619hbFTyDDqDnE5TFv+vCMXBVv0qxBfHIW3MR6Rim5kFV+dBMCrITlFsJtmhrF14r1rDai++Qt8u1UmhSXbjs89+qixz0wyhn8RFRXVF+CC0kGdQkyvWWL2mKWqajxFYXX6KK9pfKneid5fi8hB3jjL31yGlniJENdWpXC3RRfFYHHlLNTBHne4QSjh/XljCkxzV8Bp/8Swnfrq2b3XbOKGblHMJ+13kdHfRZ1IEHRGYjrO2eEotnZX3jg7GmG7VnGLExs/wkG7RD2XLk67T5zLcMt+aug3xOI9mDDs4VNGbzdyEMfm/Q9tycDgDwWTh/8FyX5Ray3nQ/G8nixU0XUORF8ox/12+AWZhXc5WY9B2HvpRaJ8H8l29NkmbFz7HsUioe3zsYul/DQPSaBvibAtiu9tj3AqdLnUGv9gfL+RGUuExe+q2SEYDejMlpaVxgbTp8fd0y1y0lRaG/Vlw0KDClk4aaHr7p9crxJWQtTS6K55rvDyWvW6n79VmqR0g4S7DErpEPX4sPPASZh++mZc792+JjdfMJy/mT+ny2zoyxiaE43cLD9xPHsUngE3yCZFnjHTpF3U/xjTLuPTAkQE7jAnqxb6Sk2Ss7fCHc3E1DGQcA+P7+2IcGybIx+qzg9faznlfHZJpvqEHYcMk7feDgPbV9l3irzJeBMs58OKGOGk5F3YYXkBMr+qQ8EjftAo0l1J/cd0l0aRFrF7A/x3w+gHUdpjWG9jBvpgmzx1Y0EBaG7/8//Pk6xhfz1cQWRf8PAN7Vk0fAReXI9kRBryAQiy0J2YTNJAdTcMZAohCPUDTrwQI7kl2d3XDjqr8YIU30o1k8MuohetcVa7y9+IZNrjKqH0yoxEcsTqX9SsooPvoOLjffhK3V6toXAgkTc7++PGuqw4JjgpuzPbbtDjH+4uEn+4ruf+MW7vI9+PUjXnUJ5U6eFZrH/uEtqlgvDBrGkACu1RhrNLltaFZ+IBOntGJhFVelnPNlIAZjApt22/Any6vpodcrbCU+ujhYkLKgTa1cGmp+i6yiPiSl3zCWIYtWI6NHDgPA8jIO0ykGN0tXGjWKPilCFG/Zrzdnbt+lXDtLYnnwg1dsS6sTglvoJzizDB2JLwxTlSlXkfoAIV3EggzJdVRxhnrOq49AZD/6Bfk1s7pE6XVfLBsCGgkgU50CO6Fbqi/S6Up95x5YbT7qpd2ufXFAQD9llf4aN92tk7uHv7f3r84yRFlrpSvcUIs2Knpm/ufIyYyunu5GReIyviX+FSwCXjc54Q2AAw3axXMp+pYlVCUOgcYuHh2NWa6IqJDwtEej2VTAYsmZlNzvCZQ7yTHfdnDGG2zxb5UiafV2Y9ZQBxaMVRyotXD1eCukGepwb9dyt8BOE3VoHBEXNlh/Jy7NySBAnJHsOe/bAC9WAInDRJH+g1cqWMPLA1RF88+oFd9xA7vO5NA2t9WMZPwDcVJXuw3sc1aP8Ue5timRpqHmZUy1weJ8k2bG6RZdmM36WResrlhdhpTCjKtutEy8/qPfOQzWCQcz8/YIJq4KAIlhmF6QQcZf3Q0bLJYGbZSZld7KmSiINV0YMFSxY1seW5TK97x+z5IbiCRA45i8CNca5AsfDqZsOPQduSeUBURma2EKNSEZgpfjFtB7R6aXeQ/U0+u4i8QRHR25QYgWRv3orfVC+68CHLQ2jR0lgJNdlSGhKhokdurYADJHIzyRmte/gec+Atd9OLNnFCP4W3/spj0n7bsytUtTK8TtIRdxUdIvAlGoZ6IywzOXXu3WGVzCS/czUO85kj2dWu+ZQInRmEEoxyzqL61Ylli/vSHDOPYSFLY5lRLxDutd4zNwcilt638pqUsRcjf5w942fqAgSYHNLdtjturPwyLcCYfYRE2XEf76Yn7rgs4GUh0kadrjuBSYv0ZatkRF+Ky2+Nx8zCJ86jUsWUV+U2ni2BOybN0jQIa0KN1B732K7oG9zTdvJYC25zncIosvcAlqtvAuGDXuQNOsD2E3XqSMPUn+2DDCJY+iWDFO8wzN55A7HzLPCph4+ZCajKduu390h3GtpIhMWFYZkU6hgxlQNDkfhs6IIXJvCzXbJXfUsQ4s3yXvZZsBmvs9W7SuhGp5P5uisTu3I+tm/r6UkV9m0DRPUv50LkjrHevsMZwVKql1zro4TGvPPb/pYeoSvAOOMMLrETNzJCf0nTqmyK+m9r6JnnQIi8nC8SPzUjrOIfQE+30Knw85rwB23mlEDlhtcYNLBPFRcfh0yiCNeNfp2EjO0xkO2pPmUAJQAgzKJJmruNYoUd/iyHPSbXlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNUwJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 6, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678867870622001635, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAHsAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAABcAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_episode_num": 502, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKL////4wBbJRLyIwBdJRHQHRSMGC7K7t1fZQoaAZKC////2gHS8hoCEdAdFgBdD6WPnV9lChoBkoU////aAdLyGgIR0B0Xl+3H7xedX2UKGgGSh3///9oB0vIaAhHQHRkpX2dupF1fZQoaAZKJv///2gHS8hoCEdAdGsHAAQxvnV9lChoBkrw/v//aAdLyGgIR0B0b/Q1JlJ6dX2UKGgGSgv///9oB0vIaAhHQHR0BU70Wdp1fZQoaAZKHf///2gHS8hoCEdAdHgi0fHPvHV9lChoBkoU////aAdLyGgIR0B0fF8Aq/dqdX2UKGgGSgL///9oB0vIaAhHQHSAenQ6ZIB1fZQoaAZKAv///2gHS8hoCEdAdIRfSQYDT3V9lChoBkom////aAdLyGgIR0B0iEhzNliCdX2UKGgGSi////9oB0vIaAhHQHSMKVMVUMp1fZQoaAZKJv///2gHS8hoCEdAdJAdUbT+enV9lChoBkod////aAdLyGgIR0B0lAcR15jZdX2UKGgGSgv///9oB0vIaAhHQHSYGOyVv/B1fZQoaAZKJv///2gHS8hoCEdAdJxRPoFFD3V9lChoBkoL////aAdLyGgIR0B0oERYigTRdX2UKGgGSib///9oB0vIaAhHQHSkEPYnOSp1fZQoaAZKJv///2gHS8hoCEdAdKgS4e9zwXV9lChoBkod////aAdLyGgIR0B0rEVgx8D0dX2UKGgGShT///9oB0vIaAhHQHSwe7HyVfN1fZQoaAZKJv///2gHS8hoCEdAdLSNCZ4Oc3V9lChoBkoU////aAdLyGgIR0B0uLS/j81odX2UKGgGSib///9oB0vIaAhHQHS8tIsiB5J1fZQoaAZKC////2gHS8hoCEdAdMBoakyk9HV9lChoBkod////aAdLyGgIR0B0xEMspXp4dX2UKGgGSib///9oB0vIaAhHQHTISRB/qgR1fZQoaAZK8P7//2gHS8hoCEdAdMxK/20zCXV9lChoBkoU////aAdLyGgIR0B00Aclw97odX2UKGgGSh3///9oB0vIaAhHQHTT9b9qDbt1fZQoaAZKHf///2gHS8hoCEdAdNen+AEt/XV9lChoBkoU////aAdLyGgIR0B0255mh/RWdX2UKGgGSi////9oB0vIaAhHQHTfqiKziS91fZQoaAZKL////2gHS8hoCEdAdOPOavzOHHV9lChoBkr5/v//aAdLyGgIR0B0532HtWuHdX2UKGgGShT///9oB0vIaAhHQHTrSJXQtz11fZQoaAZKJv///2gHS8hoCEdAdO8B0ZFXrHV9lChoBkom////aAdLyGgIR0B08rLcKw6idX2UKGgGSi////9oB0vIaAhHQHT2SrPt2LZ1fZQoaAZKOP///2gHS8hoCEdAdPnyKNyYHHV9lChoBkod////aAdLyGgIR0B0/fG0eEIxdX2UKGgGSh3///9oB0vIaAhHQHUBsD0UXYV1fZQoaAZKL////2gHS8hoCEdAdQWOdoWYW3V9lChoBkoL////aAdLyGgIR0B1CRzNliBodX2UKGgGSgL///9oB0vIaAhHQHUMnoTwlSl1fZQoaAZKL////2gHS8hoCEdAdRIoiLVFyHV9lChoBkoU////aAdLyGgIR0B1F4E4ecQRdX2UKGgGSh3///9oB0vIaAhHQHUcm7SRbKR1fZQoaAZKJv///2gHS8hoCEdAdSIIIWxhUnV9lChoBko4////aAdLyGgIR0B1Jy/etSyddX2UKGgGSib///9oB0vIaAhHQHUshQ3xWkt1fZQoaAZKAv///2gHS8hoCEdAdTJdtVJcxHV9lChoBkom////aAdLyGgIR0B1N8Ja7mMgdX2UKGgGSh3///9oB0vIaAhHQHU+JosZpBZ1fZQoaAZKFP///2gHS8hoCEdAdUPYekpI+XV9lChoBkom////aAdLyGgIR0B1SaLJjlPrdX2UKGgGSh3///9oB0vIaAhHQHVPNMXaakR1fZQoaAZKOP///2gHS8hoCEdAdVNe7L+xW3V9lChoBkoL////aAdLyGgIR0B1Vtpj+aScdX2UKGgGSib///9oB0vIaAhHQHVaja4+bEx1fZQoaAZKHf///2gHS8hoCEdAdV5Cxu89OnV9lChoBkoU////aAdLyGgIR0B1Yh2yLQ5WdX2UKGgGShT///9oB0vIaAhHQHVlp8KG+K11fZQoaAZKAv///2gHS8hoCEdAdWlnrIHTqnV9lChoBkod////aAdLyGgIR0B1bQy0rsjWdX2UKGgGSh3///9oB0vIaAhHQHVw4FaB7NV1fZQoaAZKAv///2gHS8hoCEdAdXSX5FgDzXV9lChoBko4////aAdLyGgIR0B1eGqp97WvdX2UKGgGSi////9oB0vIaAhHQHV8TEehf0F1fZQoaAZK+f7//2gHS8hoCEdAdYAPzWf9P3V9lChoBkom////aAdLyGgIR0B1g63QUpNLdX2UKGgGSib///9oB0vIaAhHQHWHOhbnoxJ1fZQoaAZKHf///2gHS8hoCEdAdYrVoYekpXV9lChoBkod////aAdLyGgIR0B1jmpPykKvdX2UKGgGSh3///9oB0vIaAhHQHWR78Nx2jh1fZQoaAZKC////2gHS8hoCEdAdZWBrvb48HV9lChoBkod////aAdLyGgIR0B1mUKohpxndX2UKGgGSi////9oB0vIaAhHQHWc6Cxu89R1fZQoaAZKFP///2gHS8hoCEdAdaB5Gz8gp3V9lChoBkov////aAdLyGgIR0B1pGfNA1NydX2UKGgGSi////9oB0vIaAhHQHWoDaCcwxp1fZQoaAZKAv///2gHS8hoCEdAdauPykKu0XV9lChoBko4////aAdLyGgIR0B1rzFOwgTzdX2UKGgGSib///9oB0vIaAhHQHWzD6BRQ791fZQoaAZKJv///2gHS8hoCEdAdbbBEroW6HV9lChoBkov////aAdLyGgIR0B1uoCbMHKPdX2UKGgGShT///9oB0vIaAhHQHW+KhlDneV1fZQoaAZKAv///2gHS8hoCEdAdcHBMi8nNXV9lChoBkom////aAdLyGgIR0B1xWKgqVhTdX2UKGgGSib///9oB0vIaAhHQHXJIDDCP6t1fZQoaAZKHf///2gHS8hoCEdAdcznZ00WM3V9lChoBkov////aAdLyGgIR0B10JmAbyYpdX2UKGgGSjj///9oB0vIaAhHQHXUWI9C/oJ1fZQoaAZKOP///2gHS8hoCEdAddgJT2nKn3V9lChoBkoL////aAdLyGgIR0B127q2SdOJdX2UKGgGShT///9oB0vIaAhHQHXfPK6nR9h1fZQoaAZKL////2gHS8hoCEdAdeL2OhkAgnV9lChoBkom////aAdLyGgIR0B15si6g/TtdX2UKGgGSib///9oB0vIaAhHQHXqT06HTJB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f12922acf70>", "add": "<function ReplayBuffer.add at 0x7f12922b4040>", "sample": "<function ReplayBuffer.sample at 0x7f12922b40d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f12922b4160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f12922b50c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 300000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
dqn-Taxi-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd9dc327712ddcef679411424409f3af102dae6ea4e85f360032222d53fc63e0
3
+ size 612020
dqn-Taxi-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
dqn-Taxi-v3/data ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f1292256e50>",
8
+ "_build": "<function DQNPolicy._build at 0x7f1292256ee0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f1292256f70>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f129225f040>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f129225f0d0>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f129225f160>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f129225f1f0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc._abc_data object at 0x7f129225e280>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
21
+ ":serialized:": "gAWVgwAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRN9AGMBl9zaGFwZZQpjAVkdHlwZZSMBW51bXB5lGgHk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMCl9ucF9yYW5kb22UTnViLg==",
22
+ "n": 500,
23
+ "_shape": [],
24
+ "dtype": "int64",
25
+ "_np_random": null
26
+ },
27
+ "action_space": {
28
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
29
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAA+tDKR6jy5TrjLgp6///q9OtS3uloumNRSE4O1WS/uo+UlXQMrtGyPPPvl/Y+pgJosBXQgQJQfHYtPI/RUV2NGvTK0Lq1OdWCqKpeN6EWwafzrNU8QFVCTM498bOln8BiSlkQFmWB2PaSdGoXXdh/9ehWrrWdvE6hQPqeNyBQ377FJv4rwFmTLXYzmXfXcHiI9equekJP9yUPJ+ast/VDmKG+kv6Ox3RzqToYXM4x8u0hw9T2aCpw3tznfsrnskJp/QxAuq2agMr4GaPkAe7M8v956+PqOMtEqMdkFpBoAPc4VPoOhmdxjpT2diSLD4dXPdb0koKyDfTiHxs+XZXtHQkvQaKe/082z5k30woW7ffpaB5ls499yyXEwQNSKZLr1uIL5Fo7LVDcQgSck+ZpAnAXIaazaM6rPg0+ghq7s5pOhC3VIIDRIa+0ogmFdc8Y1iMvAZzsSFNLFpOW4HpdIlN2alFyFfoZyMe/VVGCUw0vz2VYEXLLJMQlazD7D9DQ4pUWlYqRhUiIiK1eakHKJlvZsNhDsBpazP/BLWInQUd4+agGa9qEfZfH19XvUpzfi9wgXUNqITk5BqCplUap0OgRMBRCX1JT9oRkgTJphbi3QhzHyitVSMBddIX+PncSZBwsKRbIn+6KZbNPW2wi3v+1vFC6OKf8pf3EEvH7zydDtWKDX+yIKYVKRpPl4gCie/S489DTXyrJ1N/epGHqX4u7lF81BbaTQZSt82axGUqiAtmTMX2bAtAJk/pYEoXR3EGqlhEIKdv1ARfiIoPA5CD+73MsiXkFFWFc3qnWKQZs/V4ZPFEY4pczDrMEnYJXK6HarmFDBQsg7ZySebbs7qMfmv1O2uR4sj7qyMYu+kGIpcfn3uCV47zpnNRltXMniwAYUm9oGDMDI8zg4SzH+gLrxDHty+pYTFt//JpP/kVbqn/Zn3MoKLbl3EJFotxsuYX7sQ3sTVNgDFs4P+t6ihaILyQgOK9gq8nxw/up31ldhmHv6vi1Cjx/m3yuG619hbFTyDDqDnE5TFv+vCMXBVv0qxBfHIW3MR6Rim5kFV+dBMCrITlFsJtmhrF14r1rDai++Qt8u1UmhSXbjs89+qixz0wyhn8RFRXVF+CC0kGdQkyvWWL2mKWqajxFYXX6KK9pfKneid5fi8hB3jjL31yGlniJENdWpXC3RRfFYHHlLNTBHne4QSjh/XljCkxzV8Bp/8Swnfrq2b3XbOKGblHMJ+13kdHfRZ1IEHRGYjrO2eEotnZX3jg7GmG7VnGLExs/wkG7RD2XLk67T5zLcMt+aug3xOI9mDDs4VNGbzdyEMfm/Q9tycDgDwWTh/8FyX5Ray3nQ/G8nixU0XUORF8ox/12+AWZhXc5WY9B2HvpRaJ8H8l29NkmbFz7HsUioe3zsYul/DQPSaBvibAtiu9tj3AqdLnUGv9gfL+RGUuExe+q2SEYDejMlpaVxgbTp8fd0y1y0lRaG/Vlw0KDClk4aaHr7p9crxJWQtTS6K55rvDyWvW6n79VmqR0g4S7DErpEPX4sPPASZh++mZc792+JjdfMJy/mT+ny2zoyxiaE43cLD9xPHsUngE3yCZFnjHTpF3U/xjTLuPTAkQE7jAnqxb6Sk2Ss7fCHc3E1DGQcA+P7+2IcGybIx+qzg9faznlfHZJpvqEHYcMk7feDgPbV9l3irzJeBMs58OKGOGk5F3YYXkBMr+qQ8EjftAo0l1J/cd0l0aRFrF7A/x3w+gHUdpjWG9jBvpgmzx1Y0EBaG7/8//Pk6xhfz1cQWRf8PAN7Vk0fAReXI9kRBryAQiy0J2YTNJAdTcMZAohCPUDTrwQI7kl2d3XDjqr8YIU30o1k8MuohetcVa7y9+IZNrjKqH0yoxEcsTqX9SsooPvoOLjffhK3V6toXAgkTc7++PGuqw4JjgpuzPbbtDjH+4uEn+4ruf+MW7vI9+PUjXnUJ5U6eFZrH/uEtqlgvDBrGkACu1RhrNLltaFZ+IBOntGJhFVelnPNlIAZjApt22/Any6vpodcrbCU+ujhYkLKgTa1cGmp+i6yiPiSl3zCWIYtWI6NHDgPA8jIO0ykGN0tXGjWKPilCFG/Zrzdnbt+lXDtLYnnwg1dsS6sTglvoJzizDB2JLwxTlSlXkfoAIV3EggzJdVRxhnrOq49AZD/6Bfk1s7pE6XVfLBsCGgkgU50CO6Fbqi/S6Up95x5YbT7qpd2ufXFAQD9llf4aN92tk7uHv7f3r84yRFlrpSvcUIs2Knpm/ufIyYyunu5GReIyviX+FSwCXjc54Q2AAw3axXMp+pYlVCUOgcYuHh2NWa6IqJDwtEej2VTAYsmZlNzvCZQ7yTHfdnDGG2zxb5UiafV2Y9ZQBxaMVRyotXD1eCukGepwb9dyt8BOE3VoHBEXNlh/Jy7NySBAnJHsOe/bAC9WAInDRJH+g1cqWMPLA1RF88+oFd9xA7vO5NA2t9WMZPwDcVJXuw3sc1aP8Ue5timRpqHmZUy1weJ8k2bG6RZdmM36WResrlhdhpTCjKtutEy8/qPfOQzWCQcz8/YIJq4KAIlhmF6QQcZf3Q0bLJYGbZSZld7KmSiINV0YMFSxY1seW5TK97x+z5IbiCRA45i8CNca5AsfDqZsOPQduSeUBURma2EKNSEZgpfjFtB7R6aXeQ/U0+u4i8QRHR25QYgWRv3orfVC+68CHLQ2jR0lgJNdlSGhKhokdurYADJHIzyRmte/gec+Atd9OLNnFCP4W3/spj0n7bsytUtTK8TtIRdxUdIvAlGoZ6IywzOXXu3WGVzCS/czUO85kj2dWu+ZQInRmEEoxyzqL61Ylli/vSHDOPYSFLY5lRLxDutd4zNwcilt638pqUsRcjf5w942fqAgSYHNLdtjturPwyLcCYfYRE2XEf76Yn7rgs4GUh0kadrjuBSYv0ZatkRF+Ky2+Nx8zCJ86jUsWUV+U2ni2BOybN0jQIa0KN1B732K7oG9zTdvJYC25zncIosvcAlqtvAuGDXuQNOsD2E3XqSMPUn+2DDCJY+iWDFO8wzN55A7HzLPCph4+ZCajKduu390h3GtpIhMWFYZkU6hgxlQNDkfhs6IIXJvCzXbJXfUsQ4s3yXvZZsBmvs9W7SuhGp5P5uisTu3I+tm/r6UkV9m0DRPUv50LkjrHevsMZwVKql1zro4TGvPPb/pYeoSvAOOMMLrETNzJCf0nTqmyK+m9r6JnnQIi8nC8SPzUjrOIfQE+30Knw85rwB23mlEDlhtcYNLBPFRcfh0yiCNeNfp2EjO0xkO2pPmUAJQAgzKJJmruNYoUd/iyHPSbXlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNUwJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
30
+ "n": 6,
31
+ "_shape": [],
32
+ "dtype": "int64",
33
+ "_np_random": "RandomState(MT19937)"
34
+ },
35
+ "n_envs": 1,
36
+ "num_timesteps": 100000,
37
+ "_total_timesteps": 100000,
38
+ "_num_timesteps_at_start": 0,
39
+ "seed": null,
40
+ "action_noise": null,
41
+ "start_time": 1678867870622001635,
42
+ "learning_rate": 0.0001,
43
+ "tensorboard_log": null,
44
+ "lr_schedule": {
45
+ ":type:": "<class 'function'>",
46
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
47
+ },
48
+ "_last_obs": {
49
+ ":type:": "<class 'numpy.ndarray'>",
50
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAHsAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
51
+ },
52
+ "_last_episode_starts": {
53
+ ":type:": "<class 'numpy.ndarray'>",
54
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
55
+ },
56
+ "_last_original_obs": {
57
+ ":type:": "<class 'numpy.ndarray'>",
58
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAABcAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
59
+ },
60
+ "_episode_num": 502,
61
+ "use_sde": false,
62
+ "sde_sample_freq": -1,
63
+ "_current_progress_remaining": 0.0,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVUAoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKL////4wBbJRLyIwBdJRHQHRSMGC7K7t1fZQoaAZKC////2gHS8hoCEdAdFgBdD6WPnV9lChoBkoU////aAdLyGgIR0B0Xl+3H7xedX2UKGgGSh3///9oB0vIaAhHQHRkpX2dupF1fZQoaAZKJv///2gHS8hoCEdAdGsHAAQxvnV9lChoBkrw/v//aAdLyGgIR0B0b/Q1JlJ6dX2UKGgGSgv///9oB0vIaAhHQHR0BU70Wdp1fZQoaAZKHf///2gHS8hoCEdAdHgi0fHPvHV9lChoBkoU////aAdLyGgIR0B0fF8Aq/dqdX2UKGgGSgL///9oB0vIaAhHQHSAenQ6ZIB1fZQoaAZKAv///2gHS8hoCEdAdIRfSQYDT3V9lChoBkom////aAdLyGgIR0B0iEhzNliCdX2UKGgGSi////9oB0vIaAhHQHSMKVMVUMp1fZQoaAZKJv///2gHS8hoCEdAdJAdUbT+enV9lChoBkod////aAdLyGgIR0B0lAcR15jZdX2UKGgGSgv///9oB0vIaAhHQHSYGOyVv/B1fZQoaAZKJv///2gHS8hoCEdAdJxRPoFFD3V9lChoBkoL////aAdLyGgIR0B0oERYigTRdX2UKGgGSib///9oB0vIaAhHQHSkEPYnOSp1fZQoaAZKJv///2gHS8hoCEdAdKgS4e9zwXV9lChoBkod////aAdLyGgIR0B0rEVgx8D0dX2UKGgGShT///9oB0vIaAhHQHSwe7HyVfN1fZQoaAZKJv///2gHS8hoCEdAdLSNCZ4Oc3V9lChoBkoU////aAdLyGgIR0B0uLS/j81odX2UKGgGSib///9oB0vIaAhHQHS8tIsiB5J1fZQoaAZKC////2gHS8hoCEdAdMBoakyk9HV9lChoBkod////aAdLyGgIR0B0xEMspXp4dX2UKGgGSib///9oB0vIaAhHQHTISRB/qgR1fZQoaAZK8P7//2gHS8hoCEdAdMxK/20zCXV9lChoBkoU////aAdLyGgIR0B00Aclw97odX2UKGgGSh3///9oB0vIaAhHQHTT9b9qDbt1fZQoaAZKHf///2gHS8hoCEdAdNen+AEt/XV9lChoBkoU////aAdLyGgIR0B0255mh/RWdX2UKGgGSi////9oB0vIaAhHQHTfqiKziS91fZQoaAZKL////2gHS8hoCEdAdOPOavzOHHV9lChoBkr5/v//aAdLyGgIR0B0532HtWuHdX2UKGgGShT///9oB0vIaAhHQHTrSJXQtz11fZQoaAZKJv///2gHS8hoCEdAdO8B0ZFXrHV9lChoBkom////aAdLyGgIR0B08rLcKw6idX2UKGgGSi////9oB0vIaAhHQHT2SrPt2LZ1fZQoaAZKOP///2gHS8hoCEdAdPnyKNyYHHV9lChoBkod////aAdLyGgIR0B0/fG0eEIxdX2UKGgGSh3///9oB0vIaAhHQHUBsD0UXYV1fZQoaAZKL////2gHS8hoCEdAdQWOdoWYW3V9lChoBkoL////aAdLyGgIR0B1CRzNliBodX2UKGgGSgL///9oB0vIaAhHQHUMnoTwlSl1fZQoaAZKL////2gHS8hoCEdAdRIoiLVFyHV9lChoBkoU////aAdLyGgIR0B1F4E4ecQRdX2UKGgGSh3///9oB0vIaAhHQHUcm7SRbKR1fZQoaAZKJv///2gHS8hoCEdAdSIIIWxhUnV9lChoBko4////aAdLyGgIR0B1Jy/etSyddX2UKGgGSib///9oB0vIaAhHQHUshQ3xWkt1fZQoaAZKAv///2gHS8hoCEdAdTJdtVJcxHV9lChoBkom////aAdLyGgIR0B1N8Ja7mMgdX2UKGgGSh3///9oB0vIaAhHQHU+JosZpBZ1fZQoaAZKFP///2gHS8hoCEdAdUPYekpI+XV9lChoBkom////aAdLyGgIR0B1SaLJjlPrdX2UKGgGSh3///9oB0vIaAhHQHVPNMXaakR1fZQoaAZKOP///2gHS8hoCEdAdVNe7L+xW3V9lChoBkoL////aAdLyGgIR0B1Vtpj+aScdX2UKGgGSib///9oB0vIaAhHQHVaja4+bEx1fZQoaAZKHf///2gHS8hoCEdAdV5Cxu89OnV9lChoBkoU////aAdLyGgIR0B1Yh2yLQ5WdX2UKGgGShT///9oB0vIaAhHQHVlp8KG+K11fZQoaAZKAv///2gHS8hoCEdAdWlnrIHTqnV9lChoBkod////aAdLyGgIR0B1bQy0rsjWdX2UKGgGSh3///9oB0vIaAhHQHVw4FaB7NV1fZQoaAZKAv///2gHS8hoCEdAdXSX5FgDzXV9lChoBko4////aAdLyGgIR0B1eGqp97WvdX2UKGgGSi////9oB0vIaAhHQHV8TEehf0F1fZQoaAZK+f7//2gHS8hoCEdAdYAPzWf9P3V9lChoBkom////aAdLyGgIR0B1g63QUpNLdX2UKGgGSib///9oB0vIaAhHQHWHOhbnoxJ1fZQoaAZKHf///2gHS8hoCEdAdYrVoYekpXV9lChoBkod////aAdLyGgIR0B1jmpPykKvdX2UKGgGSh3///9oB0vIaAhHQHWR78Nx2jh1fZQoaAZKC////2gHS8hoCEdAdZWBrvb48HV9lChoBkod////aAdLyGgIR0B1mUKohpxndX2UKGgGSi////9oB0vIaAhHQHWc6Cxu89R1fZQoaAZKFP///2gHS8hoCEdAdaB5Gz8gp3V9lChoBkov////aAdLyGgIR0B1pGfNA1NydX2UKGgGSi////9oB0vIaAhHQHWoDaCcwxp1fZQoaAZKAv///2gHS8hoCEdAdauPykKu0XV9lChoBko4////aAdLyGgIR0B1rzFOwgTzdX2UKGgGSib///9oB0vIaAhHQHWzD6BRQ791fZQoaAZKJv///2gHS8hoCEdAdbbBEroW6HV9lChoBkov////aAdLyGgIR0B1uoCbMHKPdX2UKGgGShT///9oB0vIaAhHQHW+KhlDneV1fZQoaAZKAv///2gHS8hoCEdAdcHBMi8nNXV9lChoBkom////aAdLyGgIR0B1xWKgqVhTdX2UKGgGSib///9oB0vIaAhHQHXJIDDCP6t1fZQoaAZKHf///2gHS8hoCEdAdcznZ00WM3V9lChoBkov////aAdLyGgIR0B10JmAbyYpdX2UKGgGSjj///9oB0vIaAhHQHXUWI9C/oJ1fZQoaAZKOP///2gHS8hoCEdAddgJT2nKn3V9lChoBkoL////aAdLyGgIR0B127q2SdOJdX2UKGgGShT///9oB0vIaAhHQHXfPK6nR9h1fZQoaAZKL////2gHS8hoCEdAdeL2OhkAgnV9lChoBkom////aAdLyGgIR0B15si6g/TtdX2UKGgGSib///9oB0vIaAhHQHXqT06HTJB1ZS4="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 25000,
73
+ "buffer_size": 1000000,
74
+ "batch_size": 32,
75
+ "learning_starts": 50000,
76
+ "tau": 1.0,
77
+ "gamma": 0.99,
78
+ "gradient_steps": 1,
79
+ "optimize_memory_usage": false,
80
+ "replay_buffer_class": {
81
+ ":type:": "<class 'abc.ABCMeta'>",
82
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
83
+ "__module__": "stable_baselines3.common.buffers",
84
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
85
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f12922acf70>",
86
+ "add": "<function ReplayBuffer.add at 0x7f12922b4040>",
87
+ "sample": "<function ReplayBuffer.sample at 0x7f12922b40d0>",
88
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f12922b4160>",
89
+ "__abstractmethods__": "frozenset()",
90
+ "_abc_impl": "<_abc._abc_data object at 0x7f12922b50c0>"
91
+ },
92
+ "replay_buffer_kwargs": {},
93
+ "train_freq": {
94
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
95
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
96
+ },
97
+ "actor": null,
98
+ "use_sde_at_warmup": false,
99
+ "exploration_initial_eps": 1.0,
100
+ "exploration_final_eps": 0.05,
101
+ "exploration_fraction": 0.1,
102
+ "target_update_interval": 10000,
103
+ "_n_calls": 300000,
104
+ "max_grad_norm": 10,
105
+ "exploration_rate": 0.05,
106
+ "exploration_schedule": {
107
+ ":type:": "<class 'function'>",
108
+ ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
109
+ },
110
+ "batch_norm_stats": [],
111
+ "batch_norm_stats_target": []
112
+ }
dqn-Taxi-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51a6b0fe36923368d846f90a8eb6a50e3f98991e8ca65beb6ad8879178aa62fa
3
+ size 297711
dqn-Taxi-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a2a8ecd70158e105d80b93a3b7a4877084c9ae03aac73fed3979677b58ce521
3
+ size 296833
dqn-Taxi-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
dqn-Taxi-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T08:17:33.445170"}