Upload 2 files
Browse files- main.py +207 -0
- requirements.txt +116 -0
main.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Final RestAPI File"""
|
2 |
+
from io import BytesIO
|
3 |
+
from datetime import datetime
|
4 |
+
import pandas as pd
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import fastapi
|
8 |
+
from fastapi import FastAPI, File, UploadFile, Body, Form
|
9 |
+
from fastapi.responses import StreamingResponse, Response
|
10 |
+
|
11 |
+
import app.src
|
12 |
+
from app.src.conversion import h5_to_pandas, csv_to_pandas
|
13 |
+
from app.src.ecg_processing import process_batch
|
14 |
+
from app.src.pydantic_models import ECGBatch, ECGSample, ECGConfig
|
15 |
+
from app.src.configs import OutputFormats
|
16 |
+
|
17 |
+
from app.src.logger import setup_logger
|
18 |
+
logger = setup_logger(__name__)
|
19 |
+
|
20 |
+
# Set metadata
|
21 |
+
with open("app/docs/description.md", "r", encoding="utf-8") as f:
|
22 |
+
description = f.read()
|
23 |
+
|
24 |
+
tags_metadata = [
|
25 |
+
{
|
26 |
+
"name": "💾conversion",
|
27 |
+
"description": "Convert and create data files without HRV feature processing.",
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "🚀feature processing",
|
31 |
+
"description": "Run HRV feature processing.",
|
32 |
+
"externalDocs": {
|
33 |
+
"description": "Input Data Form external docs",
|
34 |
+
"url": "https://github.com/hubii-world/pipeline_hrv-02#input-data-form",
|
35 |
+
},
|
36 |
+
},
|
37 |
+
]
|
38 |
+
|
39 |
+
# Initialize an instance of FastAPI
|
40 |
+
app = FastAPI(
|
41 |
+
default_response_class=fastapi.responses.ORJSONResponse,
|
42 |
+
openapi_tags=tags_metadata,
|
43 |
+
title="hrv-pipeline-02 💓",
|
44 |
+
description=description,
|
45 |
+
version="0.0.1",
|
46 |
+
contact={
|
47 |
+
"name": "The Open HUman BIosignal Intelligence Platform (HUBII)",
|
48 |
+
"url": "https://hubii.world/hrv-pipeline-02/",
|
49 |
+
})
|
50 |
+
|
51 |
+
|
52 |
+
@app.post("/raw_json_input/", tags=["🚀feature processing"], summary="📥 Run feature processing given a raw json input.")
|
53 |
+
def process_features_by_raw_json_input(data: ECGBatch = Body(...)):
|
54 |
+
try:
|
55 |
+
samples = data.samples
|
56 |
+
configs = data.configs
|
57 |
+
|
58 |
+
features_df = process_batch(samples, configs)
|
59 |
+
features_dict = features_df.to_dict(orient='records')
|
60 |
+
|
61 |
+
return {
|
62 |
+
"supervisor": data.supervisor,
|
63 |
+
"record_date": data.record_date,
|
64 |
+
"configs": configs,
|
65 |
+
"features": features_dict}
|
66 |
+
|
67 |
+
except Exception as e:
|
68 |
+
error_message = str(e)
|
69 |
+
return {"error": error_message}
|
70 |
+
|
71 |
+
|
72 |
+
@app.post("/h5_input/", tags=["🚀feature processing"], summary="📂 Run feature processing given multiple h5 files.")
|
73 |
+
def process_features_by_h5_file_input(
|
74 |
+
output_format: OutputFormats = Form(..., alias="Output Format",
|
75 |
+
description="Output file format ('csv' or 'json' or 'excel_spreadsheet')."),
|
76 |
+
supervisor: str = Form(..., alias="Supervisor", description="Name of the supervisor doing the analysis."),
|
77 |
+
configs: ECGConfig = Form(None, alias="Additional Configurations",
|
78 |
+
description="Additional configurations that should be included."),
|
79 |
+
subject_ids: List[str] = Form(..., alias="Subject ID", description="Id of the subject of the sample data"),
|
80 |
+
ecg_files: List[UploadFile] = File(..., alias="ECG Data", description="HDF5 file with the ecg data."),
|
81 |
+
labels: List[str] = Form(None, alias="Labels", description="List with the label data."),
|
82 |
+
):
|
83 |
+
try:
|
84 |
+
logger.info(f"Received {len(ecg_files)} ECG file(s)...")
|
85 |
+
logger.info("Validating inputs...")
|
86 |
+
assert len(labels) in [0, len(ecg_files)], "Not enough labels defined, none or one for each sample."
|
87 |
+
assert len(subject_ids) <= len(ecg_files), "Too many subject IDs defined, maximal one for each sample."
|
88 |
+
if len(subject_ids) == 1:
|
89 |
+
subject_ids = [subject_ids[0]] * len(ecg_files)
|
90 |
+
if len(subject_ids) != len(ecg_files):
|
91 |
+
subject_ids += ["unknown"] * (len(ecg_files) - len(subject_ids))
|
92 |
+
|
93 |
+
logger.info("Extracting samples from files...")
|
94 |
+
samples = []
|
95 |
+
for i, file in enumerate(ecg_files):
|
96 |
+
sample_df = h5_to_pandas(file.file)
|
97 |
+
freq = int(sample_df["frequency"].iloc[0])
|
98 |
+
device_name = str(sample_df["device_name"].iloc[0])
|
99 |
+
|
100 |
+
samples.append(
|
101 |
+
ECGSample(
|
102 |
+
subject_id=subject_ids[i],
|
103 |
+
frequency=freq,
|
104 |
+
device_name=device_name,
|
105 |
+
timestamp_idx=sample_df["timestamp_idx"].tolist(),
|
106 |
+
ecg=sample_df["ecg"].tolist(),
|
107 |
+
label=labels[i] if labels else None
|
108 |
+
)
|
109 |
+
)
|
110 |
+
|
111 |
+
logger.info("Processing batch of samples...")
|
112 |
+
features_df = process_batch(samples, configs)
|
113 |
+
|
114 |
+
if output_format == "json":
|
115 |
+
features_dict = features_df.to_dict(orient='records')
|
116 |
+
# Return JSON response
|
117 |
+
return {
|
118 |
+
"supervisor": supervisor,
|
119 |
+
"record_date": datetime.now(),
|
120 |
+
"configs": configs,
|
121 |
+
"features": features_dict
|
122 |
+
}
|
123 |
+
elif output_format == "csv":
|
124 |
+
# Return CSV file
|
125 |
+
csv_data = features_df.to_csv(index=False)
|
126 |
+
filename = "features_output.csv"
|
127 |
+
return StreamingResponse(iter([csv_data]), media_type='text/csv',
|
128 |
+
headers={'Content-Disposition': f'attachment; filename="{filename}"'})
|
129 |
+
elif output_format == "excel_spreadsheet":
|
130 |
+
# Return Excel file
|
131 |
+
output_buffer = BytesIO()
|
132 |
+
with pd.ExcelWriter(output_buffer, engine='xlsxwriter') as writer:
|
133 |
+
features_df.to_excel(writer, index=False, sheet_name='Sheet1')
|
134 |
+
output_buffer.seek(0)
|
135 |
+
response = Response(content=output_buffer.getvalue(),
|
136 |
+
media_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
137 |
+
response.headers['Content-Disposition'] = 'attachment; filename="features_output.xlsx"'
|
138 |
+
return response
|
139 |
+
else:
|
140 |
+
raise ValueError(f"Output format '{output_format}' not supported.")
|
141 |
+
|
142 |
+
except Exception as e:
|
143 |
+
error_message = str(e)
|
144 |
+
return {"error": error_message}
|
145 |
+
|
146 |
+
|
147 |
+
@app.post("/csv_input/", tags=["🚀feature processing"], summary="📂 Run feature processing given multiple csv files.")
|
148 |
+
def process_features_by_csv_file_input(
|
149 |
+
output_format: OutputFormats = Form(..., alias="Output Format",
|
150 |
+
description="Output file format ('csv' or 'json' or 'excel_spreadsheet')."),
|
151 |
+
csv_file: UploadFile = File(..., alias="CSV Data", description="CSV file with the ecg data."),
|
152 |
+
):
|
153 |
+
try:
|
154 |
+
# Read csv file
|
155 |
+
df = csv_to_pandas(csv_file.file)
|
156 |
+
# Implode
|
157 |
+
cols_to_implode = ['timestamp_idx', 'ecg', 'label']
|
158 |
+
df_imploded = df.groupby(list(set(df.columns) - set(cols_to_implode))) \
|
159 |
+
.agg({'timestamp_idx': list,
|
160 |
+
'ecg': list,
|
161 |
+
'label': list}) \
|
162 |
+
.reset_index()
|
163 |
+
# Get metadata
|
164 |
+
config_cols = [col for col in df.columns if col.startswith('configs.')]
|
165 |
+
configs = df_imploded[config_cols].iloc[0].to_dict()
|
166 |
+
configs = {key.removeprefix('configs.'): value for key, value in configs.items()}
|
167 |
+
configs = ECGConfig(**configs)
|
168 |
+
batch_cols = [col for col in df.columns if col.startswith('batch.')]
|
169 |
+
batch = df_imploded[batch_cols].iloc[0].to_dict()
|
170 |
+
batch = {key.removeprefix('batch.'): value for key, value in batch.items()}
|
171 |
+
# Get samples
|
172 |
+
samples = df_imploded.to_dict(orient='records')
|
173 |
+
samples = [ECGSample(**sample) for sample in samples]
|
174 |
+
|
175 |
+
logger.info("Processing batch of samples...")
|
176 |
+
features_df = process_batch(samples, configs)
|
177 |
+
|
178 |
+
if output_format == "json":
|
179 |
+
features_dict = features_df.to_dict(orient='records')
|
180 |
+
# Return JSON response
|
181 |
+
return {
|
182 |
+
"supervisor": batch['supervisor'],
|
183 |
+
"record_date": batch['record_date'],
|
184 |
+
"configs": configs,
|
185 |
+
"features": features_dict
|
186 |
+
}
|
187 |
+
elif output_format == "csv":
|
188 |
+
# Return CSV file
|
189 |
+
csv_data = features_df.to_csv(index=False)
|
190 |
+
filename = "features_output.csv"
|
191 |
+
return StreamingResponse(iter([csv_data]), media_type='text/csv',
|
192 |
+
headers={'Content-Disposition': f'attachment; filename="{filename}"'})
|
193 |
+
elif output_format == "excel_spreadsheet":
|
194 |
+
output_buffer = BytesIO()
|
195 |
+
with pd.ExcelWriter(output_buffer, engine='xlsxwriter') as writer:
|
196 |
+
features_df.to_excel(writer, index=False, sheet_name='Sheet1')
|
197 |
+
output_buffer.seek(0)
|
198 |
+
response = Response(content=output_buffer.getvalue(),
|
199 |
+
media_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
200 |
+
response.headers['Content-Disposition'] = 'attachment; filename="features_output.xlsx"'
|
201 |
+
return response
|
202 |
+
else:
|
203 |
+
raise ValueError(f"Output format '{output_format}' not supported.")
|
204 |
+
|
205 |
+
except Exception as e:
|
206 |
+
error_message = str(e)
|
207 |
+
return {"error": error_message}
|
requirements.txt
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# This file is autogenerated by pip-compile with Python 3.10
|
3 |
+
# by the following command:
|
4 |
+
#
|
5 |
+
# pip-compile requirements.in
|
6 |
+
#
|
7 |
+
annotated-types==0.6.0
|
8 |
+
# via pydantic
|
9 |
+
anyio==3.7.1
|
10 |
+
# via
|
11 |
+
# fastapi
|
12 |
+
# starlette
|
13 |
+
certifi==2023.11.17
|
14 |
+
# via requests
|
15 |
+
charset-normalizer==3.3.2
|
16 |
+
# via requests
|
17 |
+
click==8.1.7
|
18 |
+
# via uvicorn
|
19 |
+
colorama==0.4.6
|
20 |
+
# via
|
21 |
+
# click
|
22 |
+
# colorlog
|
23 |
+
colorlog==6.8.0
|
24 |
+
# via -r requirements.in
|
25 |
+
contourpy==1.2.0
|
26 |
+
# via matplotlib
|
27 |
+
cycler==0.12.1
|
28 |
+
# via matplotlib
|
29 |
+
exceptiongroup==1.2.0
|
30 |
+
# via anyio
|
31 |
+
fastapi==0.104.1
|
32 |
+
# via -r requirements.in
|
33 |
+
fonttools==4.46.0
|
34 |
+
# via matplotlib
|
35 |
+
h11==0.14.0
|
36 |
+
# via uvicorn
|
37 |
+
h5py==3.10.0
|
38 |
+
# via -r requirements.in
|
39 |
+
idna==3.6
|
40 |
+
# via
|
41 |
+
# anyio
|
42 |
+
# requests
|
43 |
+
joblib==1.3.2
|
44 |
+
# via scikit-learn
|
45 |
+
kiwisolver==1.4.5
|
46 |
+
# via matplotlib
|
47 |
+
matplotlib==3.8.2
|
48 |
+
# via neurokit2
|
49 |
+
neurokit2==0.2.7
|
50 |
+
# via -r requirements.in
|
51 |
+
numpy==1.26.2
|
52 |
+
# via
|
53 |
+
# contourpy
|
54 |
+
# h5py
|
55 |
+
# matplotlib
|
56 |
+
# neurokit2
|
57 |
+
# pandas
|
58 |
+
# scikit-learn
|
59 |
+
# scipy
|
60 |
+
packaging==23.2
|
61 |
+
# via matplotlib
|
62 |
+
pandas==2.1.3
|
63 |
+
# via
|
64 |
+
# -r requirements.in
|
65 |
+
# neurokit2
|
66 |
+
pillow==10.1.0
|
67 |
+
# via matplotlib
|
68 |
+
pydantic==2.5.2
|
69 |
+
# via
|
70 |
+
# -r requirements.in
|
71 |
+
# fastapi
|
72 |
+
pydantic-core==2.14.5
|
73 |
+
# via pydantic
|
74 |
+
pyparsing==3.1.1
|
75 |
+
# via matplotlib
|
76 |
+
python-dateutil==2.8.2
|
77 |
+
# via
|
78 |
+
# matplotlib
|
79 |
+
# pandas
|
80 |
+
python-multipart==0.0.6
|
81 |
+
# via -r requirements.in
|
82 |
+
pytz==2023.3.post1
|
83 |
+
# via pandas
|
84 |
+
requests==2.31.0
|
85 |
+
# via -r requirements.in
|
86 |
+
scikit-learn==1.3.2
|
87 |
+
# via
|
88 |
+
# -r requirements.in
|
89 |
+
# neurokit2
|
90 |
+
scipy==1.11.4
|
91 |
+
# via
|
92 |
+
# -r requirements.in
|
93 |
+
# neurokit2
|
94 |
+
# scikit-learn
|
95 |
+
six==1.16.0
|
96 |
+
# via python-dateutil
|
97 |
+
sniffio==1.3.0
|
98 |
+
# via anyio
|
99 |
+
starlette==0.27.0
|
100 |
+
# via fastapi
|
101 |
+
threadpoolctl==3.2.0
|
102 |
+
# via scikit-learn
|
103 |
+
typing-extensions==4.8.0
|
104 |
+
# via
|
105 |
+
# fastapi
|
106 |
+
# pydantic
|
107 |
+
# pydantic-core
|
108 |
+
# uvicorn
|
109 |
+
tzdata==2023.3
|
110 |
+
# via pandas
|
111 |
+
urllib3==2.1.0
|
112 |
+
# via requests
|
113 |
+
uuid==1.30
|
114 |
+
# via -r requirements.in
|
115 |
+
uvicorn==0.24.0.post1
|
116 |
+
# via -r requirements.in
|